The Microtubule Cytoskeleton


Book Description

This book provides an overview on the organization and function of the microtubule cytoskeleton, which is essential to many cellular processes and profoundly linked to a range of human diseases. Covering basic concepts as well as molecular details, the book discusses how microtubules are nucleated and organized into ordered arrays, at different cell cycle stages and in distinct cell types. In addition, the book highlights how defects in the microtubule cytoskeleton are linked to diseases such as neurodevelopmental disorders. The book is intended for students, graduates and more senior researchers in cell and developmental biology as well as for medical doctors.







The Cytoskeleton


Book Description

The cytoskeleton is the intracellular filament system that controls the morphology of a cell, allows it to move, and provides trafficking routes for intracellular transport. It comprises three major filament systems-actin, microtubules, and intermediate filaments-along with a host of adaptors, regulators, molecular motors, and additional structural proteins. This textbook presents a comprehensive and up-to-date view of the cytoskeleton, cataloguing its many different components and explaining how they are functionally integrated in different cellular processes. It starts by laying out the basic molecular hardware, before describing in detail how these components are assembled in cells and linked to neighboring cells and the extracellular matrix to maintain tissue architecture. It then surveys the roles of the cytoskeleton in processes such as intracellular transport, cell motility, signal transduction, and cell division. The book is thus essential reading for students learning about intracellular structure. It also represents a vital reference for all cell and developmental biologists working in this field.




The Cytoskeleton


Book Description




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




Cells: Molecules and Mechanisms


Book Description

"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.




Cytoskeleton


Book Description

The cytoskeleton is a highly dynamic intracellular platform constituted by a three-dimensional network of proteins responsible for key cellular roles as structure and shape, cell growth and development, and offering to the cell with "motility" that being the ability of the entire cell to move and for material to be moved within the cell in a regulated fashion (vesicle trafficking). The present edition of Cytoskeleton provides new insights into the structure-functional features, dynamics, and cytoskeleton's relationship to diseases. The authors' contribution in this book will be of substantial importance to a wide audience such as clinicians, researches, educators, and students interested in getting updated knowledge about molecular basis of cytoskeleton, such as regulation of cell vital processes by actin-binding proteins as cell morphogenesis, motility, their implications in cell signaling, as well as strategies for clinical trial and alternative therapies based in multitargeting molecules to tackle diseases, that is, cancer.




The Plant Cytoskeleton


Book Description

Plant cells house highly dynamic cytoskeletal networks of microtubules and actin microfilaments. They constantly undergo remodeling to fulfill their roles in supporting cell division, enlargement, and differentiation. Following early studies on structural aspects of the networks, recent breakthroughs have connected them with more and more intracellular events essential for plant growth and development. Advanced technologies in cell biology (live-cell imaging in particular), molecular genetics, genomics, and proteomics have revolutionized this field of study. Stories summarized in this book may inspire enthusiastic scientists to pursue new directions toward understanding functions of the plant cytoskeleton. The Plant Cytoskeleton is divided into three sections: 1) Molecular Basis of the Plant Cytoskeleton; 2) Cytoskeletal Reorganization in Plant Cell Division; and 3) The Cytoskeleton in Plant Growth and Development. This book is aimed at serving as a resource for anyone who wishes to learn about the plant cytoskeleton beyond ordinary textbooks.




Neuronal Cytoskeleton


Book Description

This book discusses the primary functions of microtubule-associated proteins (MAPs) such as MAP2 and tau in neuronal morphogenesis, as well as relationships between neuronal differentiation and the expression of neuronal intermediate filaments (nestin, alpha internexin, and neurofilament triplet proteins). It emphasizes the importance of several cytoskeletal proteins for neuronal differentiation and morphogenesis, organelle transport, and synaptic functions. The book considers the involvement of tau MAPs in the formation of paired helical filaments in Alzheimer's disease, and it examines the mechanisms of organelle transports and molecular motors such as kinesin, braindynein, and kinesin superfamily proteins. Cytoskeletal proteins involved in synaptic formation and transmitter release and new synaptic junctional-associated proteins are explored as well.




The Cytoskeleton in Health and Disease


Book Description

This volume addresses the structural and functional roles of the cytoskeleton and its dysfunctions which often lead to disease. It provides thorough discussion of microtubules, microfilaments, intermediate filaments, and cytoskeletal functions and dysfunctions in different organ systems. Comprehensive yet concise. The Cytoskeleton In Health And Disease presents cutting-edge discoveries balanced with background information and highlights the new aspects of the research and its impact on the design of new strategies or the identification of new targets for therapeutic intervention. There is a significant need for a book on this topic, as interest in the cytoskeleton continues to grow as causes and cures for cytoskeletal diseases are further explored in biomedical research. This book is essential reading for scientists, students, and teachers interested in expanding their knowledge related to the cytoskeleton. New researchers entering the field will find classic and well as contemporary information not easily found in the current literature or internet resources.