The Modelling and Analysis of the Mechanics of Ropes


Book Description

This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the phenomenon instrumental in rope proofing. The exploitation of the modelling is closed by the suggested modelling and analysis of component wear and life limitation and also of rope steady state heating. These will require extensive experimentation to extract the necessary coefficients, achievable by parallel testing of prototypes and similar structures. This development is focused on the modelling and analysis of ropes and other similar structures. All the modelling is based on the Principle of Virtual Work and admissible modes of deformation. Finally this book is directed towards the various industries involved in design, manufacture and use of ropes, stays and other similar structures.




Theory of Wire Rope


Book Description

Mechanical engineering, an engineering discipline borne of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a new series, featuring graduate texts and research monographs, intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the first page of the volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. Professor Leckie, the consulting editor for applied mechanics, and I are pleased to present the third volume of the series: Theory of Wire Rope by Professor Costello. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts.




Handbook of Fibre Rope Technology


Book Description

The field of fibre rope technology has witnessed incredible change and technological advance over the last few decades. At the forefront of this change has been the development of synthetic fibres and modern types of rope construction. This handbook updates the history and structural mechanics of fibre rope technology and describes the types and properties of modern rope-making materials and constructions.Following an introduction to fibre ropes, the Handbook of fibre rope technology takes a comprehensive look at rope-making materials, rope structures, properties and mechanics and covers rope production, focusing on laid strand, braided, low-twist and parallel yarn ropes. Terminations are also introduced and the many uses of rope are illustrated. The key issues surrounding the inspection and retirement of rope are identified and rope testing is thoroughly examined. The final two chapters review rope markets, distribution and liability and provide case studies from the many environments in which fibre rope is used.The Handbook of fibre rope technology is an essential reference for everyone assisting in the design, selection, use, inspection and testing of fibre rope. - A comprehensive look at rope-making materials and structures, properties and mechanics - Covers rope production including laid strand, braided, low-twist and parallel yarn ropes and rope terminations - Rope testing is examined in depth, as well as the key issues surrounding rope retirement




Wire Ropes


Book Description

The main goal of this book is to present the methods used to calculate the most important parameters for ropes, and to explain how they are applied on the basis of numerous sample calculations. The book, based on the most important chapters of the German book DRAHTSEILE, has been updated to reflect the latest developments, with the new edition especially focusing on computational methods for wire ropes. Many new calculations and examples have also been added to facilitate the dimensioning and calculation of mechanical characteristics of wire ropes. This book offers a valuable resource for all those working with wire ropes, including construction engineers, operators and supervisors of machines and installations involving wire ropes.







Proceedings of MEACM 2020


Book Description

This book gathers the proceedings of the 4th International Conference on Mechanical Engineering and Applied Composite Materials (MEACM), held in Beijing, China on October 24-25, 2020. The conference brought together researchers from several countries and covered all major areas of mechanical engineering and applied composite materials, new applications and current trends. The topics covered include: structure and design, mechanical manufacturing and automation, robotics and mechatronics, mechanical behavior of nanomaterials, nanocomposites, and composite mechanics. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.







ICPER 2020


Book Description

This book contains papers presented in the 7th International Conference on Production, Energy and Reliability (ICPER 2020) under the banner of World Engineering, Science & Technology Congress (ESTCON2020) held from 14th to 16th July 2020 at Borneo Convention Centre, Kuching, Malaysia. The conference contains papers presented by academics and industrial practitioners showcasing their latest advancements and findings in mechanical engineering areas with an emphasis on sustainability and the Industrial Revolution 4.0. The papers are categorized under the following tracks and topics of research: IoT, Reliability and Simulation Advanced Materials, Corrosion and Autonomous Production Efficient Energy Systems and Thermofluids Production, Manufacturing and Automotive




Machines and Technological Equipment


Book Description

Special topic volume with invited peer-reviewed papers only




A Practitioner's Study: about Rope Rescue Rigging


Book Description

A Practitioner's Study: About Rope Rescue represents best practices in the rope rescue trade as seen through the eyes of international instructor - Pat Rhodes. This book includes three major sections; Management Level of Rope Rescue; Operations Level Rigging; and Technician Level Rigging. Reliable and applicable rigging physics is a central theme throughout this book. In the Management Level many factors are addressed that contribute to the success of a rope rescue incident and to the sustainable growth of a rescue program.The Operations Level looks at the nuts and bolts of rigging including: a robust chapter on knot craft; extensive anchor aptitude development, comprehensive treatment of belay systems and the many devices and techniques associated with belaying; Mainline issues associated with lowering and raising system; new and refreshing litter configurations; and vertical mobility. The Technician Level digs into the the reasons behind the actions, plus, the exploration of more advance techniques as seen in various highline systems, and mid-wall pick-offs. In this section the reader will find a detailed presentation of rigging physics, including vector analysis, friction basics, compression/tension, and torque.From the apprentice to the journeyman rescuer; highly beneficial rigging knowledge for all levels of expertise is available in this book.