The Molecular and Cellular Biology of the Potato


Book Description

Potato improvement by traditional breeding and opprotunities for new technologies; Ac-Ds trasposons mapped near disease resistance loci for targeted tagging in potato; Studies to enhance starch biosynthesis by manipulation of ADP-glucose pyrophsphorylase genes; Control of carbohydrate metabolism in potato tubers; Transgenic potatoes changed in carbohidrate partitioning and allocation; Control of sugar balance in potato tubers; Post-harvest regulation of sucrose accumulation in transgenic potatoes: role and properties of potato tuver UDP-glucose pyrophosphorylase; Post-harvest potato tuver glycerolipid; Functionality of semi-artificial trasnit peptides encoded by gene constructs derived form hte potato gene for granule-bound starch synthase; Potato alternative oxidase: detection of mRNA by PCR and tissue-specific differences in the protein levels; Polyphenol oxidase in potato tubers; Gene expression during early tuber development; Use of ubiquitin promoters for transgene; Regulation of translation in potato tubers in response to environmental stress; Expression of the Brasil nut methuibube-rich protein in transgenic potato plants; Strategies towards introducing resistance to bacterial pathogens in transgenic potatoes; Field performance of transgenic potatoes; Analysis of containment and food safety issues associated with the release of transgenic potatoes.







The Potato Genome


Book Description

This book describes the historical importance of potato (Solanum tuberosum L.),potato genetic resources and stocks (including S. tuberosum group Phureja DM1-3 516 R44, a unique doubled monoploid homozygous line) used for potato genome sequencing. It also discusses strategies and tools for high-throughput sequencing, sequence assembly, annotation, analysis, repetitive sequences and genotyping-by-sequencing approaches. Potato (Solanum tuberosum L.; 2n = 4x = 48) is the fourth most important food crop of the world after rice, wheat and maize and holds great potential to ensure both food and nutritional security. It is an autotetraploid crop with complex genetics, acute inbreeding depression and a highly heterozygous nature. Further, the book examines the recent discovery of whole genome sequencing of a few wild potato species genomes, genomics in management and genetic enhancement of Solanum species, new strategies towards durable potato late blight resistance, structural analysis of resistance genes, genomics resources for abiotic stress management, as well as somatic cell genetics and modern approaches in true-potato-seed technology. The complete genome sequence provides a better understanding of potato biology, underpinning evolutionary process, genetics, breeding and molecular efforts to improve various important traits involved in potato growth and development.




Advances in Potato Chemistry and Technology


Book Description

Developments in potato chemistry, including identification and use of the functional components of potatoes, genetic improvements and modifications that increase their suitability for food and non-food applications, the use of starch chemistry in non-food industry and methods of sensory and objective measurement have led to new and important uses for this crop. Advances in Potato Chemistry and Technology presents the most current information available in one convenient resource.The expert coverage includes details on findings related to potato composition, new methods of quality determination of potato tubers, genetic and agronomic improvements, use of specific potato cultivars and their starches, flours for specific food and non-food applications, and quality measurement methods for potato products. - Covers potato chemistry in detail, providing key understanding of the role of chemical compositions on emerging uses for specific food and non-food applications - Presents coverage of developing areas, related to potato production and processing including genetic modification of potatoes, laboratory and industry scale sophistication, and modern quality measurement techniques to help producers identify appropriate varieties based on anticipated use - Explores novel application uses of potatoes and potato by-products to help producers identify potential areas for development of potato variety and structure




Horticultural Reviews, Volume 14


Book Description

Horticultural Reviews presents state-of-the-art reviews on topics in horticultural science and technology covering both basic and applied research. Topics covered include the horticulture of fruits, vegetables, nut crops, and ornamentals. These review articles, written by world authorities, bridge the gap between the specialized researcher and the broader community of horticultural scientists and teachers.




Gene Editing in Plants


Book Description

Gene Editing in Plants, Volume 149 aims to provide the reader with an up-to-date survey of cutting-edge research with gene editing tools and an overview of the implications of this research on the nutritional quality of fruits, vegetables and grains. New chapters in the updated volume include topics relating to Genome Engineering and Agriculture: Opportunities and Challenges, the Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean, the Use of Zinc-Finger Nucleases for Crop Improvement, Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus, and Gene Editing With TALEN and CRISPR/Cas in Rice. This ongoing serial contain contributions from leading scientists and researchers in the field of gene editing in plants who describe the results of their own research in this rapidly expanding area of science. - Shows the importance of revolutionary gene editing technology on plant biology research and its application to agricultural production - Provides insight into what may lie ahead in this rapidly expanding area of plant research and development - Contains contributions from major leaders in the field of plant gene editing




Potato Biology and Biotechnology


Book Description

In the past 15-20 years major discoveries have been concluded on potato biology and biotechnology. Important new tools have been developed in the area of molecular genetics, and our understanding of potato physiology has been revolutionized due to amenability of the potato to genetic transformation. This technology has impacted our understanding of the molecular basis of plant-pathogen interaction and has also opened new opportunities for the use of the potato in a variety of non-food biotechnological purposes. This book covers the potato world market as it expands further into the new millennium. Authors stress the overriding need for stable yields to eliminate human hunger and poverty, while considering solutions to enhance global production and distribution. It comprehensively describes genetics and genetic resources, plant growth and development, response to the environment, tuber quality, pests and diseases, biotechnology and crop management. Potato Biology is the most valuable reference available for all professionals involved in the potato industry, plant biologists and agronomists. - Offers an understanding of the social, economic and market factors that influence production and distribution - Discusses developments and useful traits in transgenic biology and genetic engineering - The first reference entirely devoted to understanding new advances in potato biology and biotechnology




Program report, 1997-98


Book Description




Biosynthesis and Manipulation of Plant Products


Book Description

Volumes I and 2 of this Plant Biotechnology series reviewed fundamental aspects of plant molecular biology and discussed production and analysis of the first generation of transgenic plants of potential use in agriculture and horticulture. These included plants resistant to insects, viruses and herbicides, which were produced by adding genes from other organisms. Realisation of the potential of plant breeding has led to a resurgence of interest in methods of altering the structure, composition and function of plant constituents, which represents an even greater challenge and offers scope for improving the quality of a wide range of agricultural products. This, in tum, has resulted in a re-evaluation of priorities and targets by industry. Volume 3 of this series considers the biochemical and gentic basis of the biosynthesis of plant products such as starch, lipids, carotenoids and cell walls, and evaluates the ways in which biosynthesis of these products can be modified for use in the food industries. Authors also cover the biosynthesis of rare secondary products and the function and application of proteins for plant protection and therapeutic use. The emphasis throughout is on the relationship between fundamen tal aspects of biosynthesis and structure-function relationships, and application of this knowledge to the redesigning and altering of plant products by molecular genetics.




Use of Agriculturally Important Genes in Biotechnology


Book Description

During the 45 years of communist regimes in Hungary, Poland and Slovakia, agriculture was centrally directed without regard of quality factors and market needs, and was heavily subsidized. Democratization of the countries and adoption of market driven economies, including agriculture, created conditions that require new thinking and approaches to find market areas that will fill the needs of each country, and provide produce that is not redundant for the Common Market. The aim of this book is to facilitate solving common agricultural problems using the tools of biotechnology. The book addresses five themes: Plant Transformations, Plant Genomics, Breeding Plants for Resistance and Legal Aspects of Biotechnology, including risk assessment. Some specific topics dealt with are: The way from fundamental research to start-up company, Crop improvement by transgenic technology; Strategies for improving resistance; Current procedures for applying risk assessment in genetically modified crops; Questions arising from the implementation of the Hungarian gene technology law; Public perception and legislation of Biotechnology in Poland.