Cell'Cell Interactions


Book Description

A versatile collection of readily reproducible cell-cell interaction assays for uncovering cellular interactions at the molecular level, both in vitro and in vivo. The protocols cover a diverse set of cell-cell interaction models in both normal and pathological states, are readily adaptable to nearly any cell type and organ system, and include primary data and outcome analysis. In addition, the protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.







Cell Interaction


Book Description

This book discusses contemporary ideas on different molecular and immunological aspects of diseases. Different signaling mediators drive the production of messenger molecules that mediate their action, leading to the elicitation/suppression of immune responses. It provides a balanced approach to the study of different molecular phenomena that eventually drive infection outcomes and that can be manipulated for therapeutic benefits.




Protein Interactions


Book Description

Protein Interactions A fundamental guide to the burgeoning field of protein interactions From enzymes to transcription factors to cell membrane receptors, proteins are at the heart of biological cell function. Virtually all cellular processes are governed by their interactions, with one another, with cell bodies, with DNA, or with small molecules. The systematic study of these interactions is called Interactomics, and research within this new field promises to shape the future of molecular cell biology. Protein Interactions goes beyond any existing guide to protein interactions, presenting the first truly comprehensive overview of the field. Edited by two leading scholars in the field of protein bioinformatics, this book covers all known categories of protein interaction, stable as well as transient, as well as the effect of mutations and post-translational modifications on the interaction behavior. Protein Interactions readers will also find: Introductory chapters on protein structure, conformational dynamics, and protein-protein binding interfaces A data-driven approach incorporating machine learning and integrating experimental data into computational models An outlook on the current challenges in the field and suggestions for future research Protein Interactions will serve as a fundamental resource for novice researchers who want a systematic introduction to interactomics, as well as for experienced cell biologists and bioinformaticians who want to gain an edge in this exciting new field.




Gap Junctions: Molecular Basis of Cell Communication in Health and Disease


Book Description

Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by internationally recognized leaders in the field, discuss the biophysical, physiological, and molecular characteristics of cell-to-cell communication via gap junctions. Key aspects of molecular structure, formation, gating, conductance, and permeability of vertebrate and invertebrate gap junction channels are highlighted. In addition, a number of chapters focus on recent discoveries that implicate connexin mutations and alterations of gap junctional communication in the pathogenesis of several diseases, including the X-linked Charcot Marie Tooth demyelinating disease, some forms of inherited sensorineural deafness, malignant transformation, cardiac malformations and arrhythmia, eye lens cataract, and Chagas' disease.




Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion


Book Description

Leukocyte adhesion molecules have been the subject of intense basic and preclinical research. Results from clinical trials obtained sofar with antibodies directed towards these surface proteins offer promise for the prevention of graft rejection and effective treatment of acute and chronic inflammatory disease. This volume presents a comprehensive review of contemporary research on the structure, function and regulation of leukocyte adhesion molecules and their ligands, from the molecular to the clinical level. The blend of basic science and clinical applications presented in Structure, Function and Regulation of Molecules Involved in Leukocyte Adhesion provides clear evidence of the biological importance of cell-cell interactions and the many potential clinical dividends afforded by understanding the molecular basis of cell adhesion. It will appeal to a broad range of readers in immunology and cell biology.