The Molecular Biology of Cell Determination and Cell Differentiation


Book Description

This series was established to create comprehensive treatises on specific topics in developmental biology. Such volumes serve a useful role in developmental biology, which is a very diverse field that receives contributions from a wide variety of disciplines. This series is a meeting ground for the various practi tioners of this science, facilitating an integration of heterogeneous information on specific topics. Each volume is comprised of chapters selected to provide the conceptual basis for a comprehensive understanding of its topic as well as an analysis of the key experiments upon which that understanding is based. The specialist in any aspect of developmental biology should understand the experimental back ground of the specialty and be able to place that body of information in context, in order to ascertain where additional research would be fruitful. The creative process then generates new experiments. This series is intended to be a vital link in that ongoing process of learning and discovery.







Molecular Mechanisms of Cell Differentiation in Gonad Development


Book Description

This book presents the current state of knowledge on the origin and differentiation of cell lines involved in the development of the vertebrate male and female gonads with particular emphasis on the mouse. It also discusses the processes leading to the testis- and ovary-specific structures and functions. The individual chapters review the origin and differentiation of the somatic cells of the genital ridges; the formation and migration of primordial germ cells in mouse and man; the gonadal supporting cell lineage and mammalian sex determination; differentiation of Sertoli and granulosa cells; mesonephric cell migration into the gonads and vascularization; origin and differentiation of androgen-producing cells in the gonads; germ cell commitment to the oogenic versus spermatogenic pathway and the role of retinoic acid; ovarian folliculogenesis; control of oocyte growth and development by intercellular communication within the follicular niche; biology of the Sertoli cell in the fetal, pubertal and adult mammalian testis; mechanisms regulating spermatogonial differentiation; stem cells in mammalian gonads; the role of microRNAs in cell differentiation during gonad development; human sex development and its disorders; as well as methods for the study of gonadal development.




Embryogenesis Explained


Book Description

The greatest mystery of life is how a single fertilized egg develops into a fully functioning, sometimes conscious multicellular organism. Embryogenesis Explained offers a new theory of how embryos build themselves, and combines simple physics with the most recent biochemical and genetic breakthroughs, based on the authors' prediction and then discovery of differentiation waves. They explain their ideas in a form accessible to the lay person and a broad spectrum of scientists and engineers. The diverse subjects of development, genetics and evolution, and their physics, are brought together to explain this major, previously unanswered scientific question of our time.As a follow up on The Hierarchical Genome, this book is a shorter but conceptually expanded work for the reader who is interested in science. It is useful as a starting point for the curious layman or the scientist or professional encountering the problem of embryogenesis without the formal biology background. There is also material useful for the seasoned biologist caught up in the new rush of information about the role of mechanics in developmental biology and cellular level mechanics in medicine.




Differentiation of Embryonic Stem Cells


Book Description

This volume covers all aspects of embryonic stem cell differentiation, including mouse embryonic stem cells, mouse embryonic germ cells, monkey and human embryonic stem cells, and gene discovery.* Early commitment steps and generation of chimeric mice* Differentiation to mesoderm derivatives* Gene discovery by manipulation of mouse embryonic stem cells




Stem Cells in Reproductive Medicine


Book Description

Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.




From a to [alpha]


Book Description

From a to&alphais a short supplemental textbook that uses control of yeast mating type as a model for many aspects of cell determination in general. Topics covered include gene silencing; genetic recombination; differentiation; combinatorial gene regulation; mRNA transport to establish asymmetric cell division; signal transduction; evolution of genetic networks; and various aspects of cell biology, including action of cytoskeleton and bud site selection. The book includes a foreword by Mark Ptashne, author of A Genetic Switch.




Cell Commitment and Differentiation


Book Description

This book is about how cells differentiate; it describes the way in which cells in animal and plant bodies take on their specialised fates.




The Science of Stem Cells


Book Description

Introduces all of the essential cell biology and developmental biology background for the study of stem cells This book gives you all the important information you need to become a stem cell scientist. It covers the characterization of cells, genetic techniques for modifying cells and organisms, tissue culture technology, transplantation immunology, properties of pluripotent and tissue specific stem cells and, in particular, the relevant aspects of mammalian developmental biology. It dispels many misconceptions about stem cells—especially that they can be miracle cells that can cure all ills. The book puts emphasis on stem cell behavior in its biological context and on how to study it. Throughout, the approach is simple, direct, and logical, and evidence is given to support conclusions. Stem cell biology has huge potential for advancing therapies for many distressing and recalcitrant diseases, and its potential will be realized most quickly when as many people as possible have a good grounding in the science of stem cells. Content focused on the basic science underpinning stem cell biology Covers techniques of studying cell properties and cell lineage in vivo and in vitro Explains the basics of embryonic development and cell differentiation, as well as the essential cell biology processes of signaling, gene expression, and cell division Includes instructor resources such as further reading and figures for downloading Offers an online supplement summarizing current clinical applications of stem cells Written by a prominent leader in the field, The Science of Stem Cells is an ideal course book for advanced undergraduates or graduate students studying stem cell biology, regenerative medicine, tissue engineering, and other topics of science and biology.




Gene Regulation and Metabolism


Book Description

An overview of current computational approaches to metabolism and gene regulation.