The Multi-Messenger Approach to High-Energy Gamma-Ray Sources


Book Description

This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues today.




The Multi-Messenger Approach to High-Energy Gamma-Ray Sources


Book Description

This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues today.




High Energy Radiation from Black Holes


Book Description

Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systematic exposition of black-hole astrophysics and general relativity in order to understand how gamma rays, cosmic rays, and neutrinos are produced by black holes. Beginning with Einstein's special and general theories of relativity, the authors give a detailed mathematical description of fundamental astrophysical radiation processes, including Compton scattering of electrons and photons, synchrotron radiation of particles in magnetic fields, photohadronic interactions of cosmic rays with photons, gamma-ray attenuation, Fermi acceleration, and the Blandford-Znajek mechanism for energy extraction from rotating black holes. The book provides a basis for graduate students and researchers in the field to interpret the latest results from high-energy observatories, and helps resolve whether energy released by rotating black holes powers the highest-energy radiations in nature. The wide range of detail will make High Energy Radiation from Black Holes a standard reference for black-hole research.




Probes of Multimessenger Astrophysics


Book Description

"I have taught from and enjoyed the first edition of the book. The selection of topics is the best I've seen. Maurizio Spurio gives very clear presentations using a generous amount of observational data. " James Matthews (Louisiana State University) This is the second edition of an introduction to “multi-messenger” astrophysics. It covers the many different aspects connecting particle physics with astrophysics and cosmology and introduces high-energy astrophysics using different probes: the electromagnetic radiation, with techniques developed by traditional astronomy; charged cosmic rays, gamma-rays and neutrinos, with methods developed in high-energy laboratories; and gravitational waves, recently observed using laser interferometers. The book offers a comprehensive and systematic approach to the theoretical background and the experimental aspects of the study of the high-energy universe. The breakthrough discovery of gravitational waves motivated this new edition of the book, to offer a more global and multimessenger vision of high-energy astrophysics. This second edition is updated and enriched with substantial new materials also deriving from the results obtained at the LIGO/Virgo observatories. For the first time it is now possible to draw the connection between gravitational waves, traditional astronomical observations and other probes (in particular, gamma-rays and neutrinos). The book draws on the extensive courses of Professor Maurizio Spurio at the University of Bologna and it is aimed at graduate students and post-graduate researchers with a basic understanding of particle and nuclear physics. It will also be of interest to particle physicists working in accelerator/collider physics who are keen to understand the mechanisms of the largest accelerators in the Universe.




Astrophysics at Very High Energies


Book Description

With the success of Cherenkov Astronomy and more recently with the launch of NASA’s Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergström presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.




Radio Galaxies at TeV Energies


Book Description

It is common believe that the centers of all galaxies exhibit supermassive black holes with masses ranging from millions up to billions of the mass of our Sun. By accreting surrounding matter, the luminosity of these galactic nuclei can outshine the emission of their host galaxies. If this is the case, they are called active galactic nuclei. Some of these objects eject powerful outflows composed of plasma, called jets. These jets can produce non-thermal radiation which observable across the entire electromagnetic spectrum from radio up to the gamma-ray frequencies. At highest frequencies (TeV range) most of the detected active galaxies have jets directed along or close to the line of sight. However, also galaxies with larger angles to the line of sight showing fascinating features were discovered, in seeming contradiction to traditional models for these so-called radio galaxies. Thus, the latter are of particular importance for understanding active galactic nuclei in general. This Special Issue contains reviews and research articles about the current knowledge of radio galaxies at TeV energies, including observational results and theoretical models. It is intended to guide the interested reader deeper into this fascinating discipline of modern day astronomy.




IFAE 2006


Book Description

This book collects the Proceedings of the Workshop "Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 Aprile 2006". The workshop is the fifth edition of a series of workshops on fundamental research in particle physics, as carried on at the most important international laboratories, and possible fallouts in medical and technological applications. Researches in this field aim at identifying the most elementary constituents of matter.




Astrophysics at Ultra-High Energies


Book Description

This book introduces young researchers to the exciting field of ultra-high energy astrophysics including charged particles, gamma rays and neutrinos. At ultra-high energy the radiation is produced by interactions of cosmic ray particles accelerated in explosive events such as supernovae or hypernovae, black holes or, possibly, the big bang. Through direct contact with senior scientists, now actively planning the next generation of experiments/models, the excitement and motivation for research at ultra-high energy was conveyed. The underpinning of these fields is a synthesis of knowledge and techniques from nuclear and particle physics, astronomy and cosmology. Informing the participants of this background, how it was derived, and the new challenges for the future are the major goal. Further, the course has helped to foster new astrophysical research and promoted contacts, which have resulted in new collaborations. Sample Chapter(s). Chapter 1: Gamma-Ray Burst: Discoveries With Swift (352 KB). Contents: Powerful Astrophysical Sources: Gamma Ray Bursts: Discoveries with Swift (A Wells); Gamma Ray Burst Phenomenology in the Swift Era (P M(r)sziros); The Nature of Dark Matter (P L Biermann & F Munyaneza); Cosmic Rays: Particle Acceleration and Propagation in the Galaxy (V S Ptuskin); GRB as Sources of Ultra-High Energy Particles (P M(r)sziros); The KASCADE-Grande Experiment (F Cossavela et al.); Gamma Ray and Neutrino Astronomy: Study of Galactic Gamma Ray Sources with Milagro (J Goodman); The GLAST Mission and Observability of Supernovae Remnants (O Tibolla); First Results from AMANDA using TWR System (A Silvestri); and other papers. Readership: Academics in astrophysics, high energy, cosmology and earth science."




High Energy Physics


Book Description




Neutron Stars and Pulsars


Book Description

Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.