The Musical-Mathematical Mind


Book Description

This book presents a deep spectrum of musical, mathematical, physical, and philosophical perspectives that have emerged in this field at the intersection of music and mathematics. In particular the contributed chapters introduce advanced techniques and concepts from modern mathematics and physics, deriving from successes in domains such as Topos theory and physical string theory. The authors include many of the leading researchers in this domain, and the book will be of value to researchers working in computational music, particularly in the areas of counterpoint, gesture, and Topos theory.




Mathematical Mind-Benders


Book Description

Peter Winkler is at it again. Following the enthusiastic reaction to Mathematical Puzzles: A Connoisseur's Collection, Peter has compiled a new collection of elegant mathematical puzzles to challenge and entertain the reader. The original puzzle connoisseur shares these puzzles, old and new, so that you can add them to your own anthology. This book is for lovers of mathematics, lovers of puzzles, lovers of a challenge. Most of all, it is for those who think that the world of mathematics is orderly, logical, and intuitive-and are ready to learn otherwise!




Musical Mathematics


Book Description

Musical Mathematics is the definitive tome for the adventurous musician. Integrating mathematics, music history, and hands-on experience, this volume serves as a comprehensive guide to the tunings and scales of acoustic instruments from around the world. Author, composer, and builder Cris Forster illuminates the mathematical principles of acoustic music, offering practical information and new discoveries about both traditional and innovative instruments.With this knowledge readers can improve, or begin to build, their own instruments inspired by Forster's creationsshown in 16 color plates. For those ready to step outside musical conventions and those whose curiosity about the science of sound is never satisfied, Musical Mathematics is the map to a new musical world.




Mind Tools


Book Description

Originally published: Boston: Houghton Mifflin, 1987.




The Musical Brain: And Other Stories


Book Description

A delirious collection of short stories from the Latin American master of micro-fiction. A delirious collection of short stories from the Latin American master of microfiction, César Aira–the author of at least eighty novels, most of them barely one hundred pages long–The Musical Brain & Other Stories comprises twenty tales about oddballs, freaks, and loonies. Aira, with his fuga hacia adelante or "flight forward" into the unknown, gives us imponderables to ponder and bizarre and seemingly out-of-context plot lines, as well as thoughtful and passionate takes on everyday reality. The title story, first published in the New Yorker, is the creme de la creme of this exhilarating collection.




Mathematical Brain Benders


Book Description

Challenge yourself with over 100 fresh paradoxes, puzzles, riddles, conundrums, word and number games for the jaded, skeptical puzzlist. Over 100 pages of comprehensive answers. Approximately 300 illustrations. "Excellent collection of unusual, offbeat, and completely original puzzles." ? Scientific American.




Emblems of Mind


Book Description




Sleight of Mind


Book Description

This “fun, brain-twisting book . . . will make you think” as it explores more than 75 paradoxes in mathematics, philosophy, physics, and the social sciences (Sean Carroll, New York Times–bestselling author of Something Deeply Hidden). Paradox is a sophisticated kind of magic trick. A magician’s purpose is to create the appearance of impossibility, to pull a rabbit from an empty hat. Yet paradox doesn’t require tangibles, like rabbits or hats. Paradox works in the abstract, with words and concepts and symbols, to create the illusion of contradiction. There are no contradictions in reality, but there can appear to be. In Sleight of Mind, Matt Cook and a few collaborators dive deeply into more than 75 paradoxes in mathematics, physics, philosophy, and the social sciences. As each paradox is discussed and resolved, Cook helps readers discover the meaning of knowledge and the proper formation of concepts—and how reason can dispel the illusion of contradiction. The journey begins with “a most ingenious paradox” from Gilbert and Sullivan’s Pirates of Penzance. Readers will then travel from Ancient Greece to cutting-edge laboratories, encounter infinity and its different sizes, and discover mathematical impossibilities inherent in elections. They will tackle conundrums in probability, induction, geometry, and game theory; perform “supertasks”; build apparent perpetual motion machines; meet twins living in different millennia; explore the strange quantum world—and much more.




Models of the Mind


Book Description

The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.




Conversations on Mind, Matter, and Mathematics


Book Description

Do numbers and the other objects of mathematics enjoy a timeless existence independent of human minds, or are they the products of cerebral invention? Do we discover them, as Plato supposed and many others have believed since, or do we construct them? Does mathematics constitute a universal language that in principle would permit human beings to communicate with extraterrestrial civilizations elsewhere in the universe, or is it merely an earthly language that owes its accidental existence to the peculiar evolution of neuronal networks in our brains? Does the physical world actually obey mathematical laws, or does it seem to conform to them simply because physicists have increasingly been able to make mathematical sense of it? Jean-Pierre Changeux, an internationally renowned neurobiologist, and Alain Connes, one of the most eminent living mathematicians, find themselves deeply divided by these questions. The problematic status of mathematical objects leads Changeux and Connes to the organization and function of the brain, the ways in which its embryonic and post-natal development influences the unfolding of mathematical reasoning and other kinds of thinking, and whether human intelligence can be simulated, modeled,--or actually reproduced-- by mechanical means. The two men go on to pose ethical questions, inquiring into the natural foundations of morality and the possibility that it may have a neural basis underlying its social manifestations. This vivid record of profound disagreement and, at the same time, sincere search for mutual understanding, follows in the tradition of Poincaré, Hadamard, and von Neumann in probing the limits of human experience and intellectual possibility. Why order should exist in the world at all, and why it should be comprehensible to human beings, is the question that lies at the heart of these remarkable dialogues.