The Nature of Mathematical Knowledge


Book Description

This book argues against the view that mathematical knowledge is a priori, contending that mathematics is an empirical science and develops historically, just as natural sciences do. Kitcher presents a complete, systematic, and richly detailed account of the nature of mathematical knowledge and its historical development, focusing on such neglected issues as how and why mathematical language changes, why certain questions assume overriding importance, and how standards of proof are modified.




The Nature of Mathematical Knowledge


Book Description

This book argues against the view that mathematical knowledge is a priori, contending that mathematics is an empirical science and develops historically, just as natural sciences do. Kitcher presents a complete, systematic, and richly detailed account of the nature of mathematical knowledge and its historical development, focusing on such neglected issues as how and why mathematical language changes, why certain questions assume overriding importance, and how standards of proof are modified.




Mathematical Knowledge


Book Description

What is the nature of mathematical knowledge? Is it anything like scientific knowledge or is it sui generis? How do we acquire it? Should we believe what mathematicians themselves tell us about it? Are mathematical concepts innate or acquired? Eight new essays offer answers to these and many other questions. Written by some of the world's leading philosophers of mathematics, psychologists, and mathematicians, Mathematical Knowledge gives a lively sense of the current state of debate in this fascinating field.




Constructing Mathematical Knowledge


Book Description

First published in 1994. This book and its companion volume, Mathematics, Education and Philosophy: An International Perspective are edited collections. Instead of the sharply focused concerns of the research monograph, the books offer a panorama of complementary and forward-looking perspectives. They illustrate the breadth of theoretical and philosophical perspectives that can fruitfully be brough to bear on the mathematics and education. The empathise of this book is on epistemological issues, encompassing multiple perspectives on the learning of mathematics, as well as broader philosophical reflections on the genesis of knowledge. It explores constructivist and social theories of learning and discusses the rile of the computer in light of these theories.




Mathematical Knowledge in Teaching


Book Description

The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.




A Mathematical Nature Walk


Book Description

How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, this book isfor your. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about natural phenomena and then shows how to answer them using mostly basic mathematics. Many of the problems are illustrated, and the book also has answers, a glossary of terms, and a list of patterns found in nature. Regardless of math background, readers will learn from the informal descriptions of the problems and gain a new appreciation of the beauty of nature and the mathematics that lies behind it. --




Mathematical Understanding of Nature


Book Description

"This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between mathematics and science."--




Naturalizing Logico-Mathematical Knowledge


Book Description

This book is meant as a part of the larger contemporary philosophical project of naturalizing logico-mathematical knowledge, and addresses the key question that motivates most of the work in this field: What is philosophically relevant about the nature of logico-mathematical knowledge in recent research in psychology and cognitive science? The question about this distinctive kind of knowledge is rooted in Plato’s dialogues, and virtually all major philosophers have expressed interest in it. The essays in this collection tackle this important philosophical query from the perspective of the modern sciences of cognition, namely cognitive psychology and neuroscience. Naturalizing Logico-Mathematical Knowledge contributes to consolidating a new, emerging direction in the philosophy of mathematics, which, while keeping the traditional concerns of this sub-discipline in sight, aims to engage with them in a scientifically-informed manner. A subsequent aim is to signal the philosophers’ willingness to enter into a fruitful dialogue with the community of cognitive scientists and psychologists by examining their methods and interpretive strategies.




Mathematical Knowledge: Its Growth Through Teaching


Book Description

In the first BACOMET volume different perspectives on issues concerning teacher education in mathematics were presented (B. Christiansen, A. G. Howson and M. Otte, Perspectives on Mathematics Education, Reidel, Dordrecht, 1986). Underlying all of them was the fundamental problem area of the relationships between mathematical knowledge and the teaching and learning processes. The subsequent project BACOMET 2, whose outcomes are presented in this book, continued this work, especially by focusing on the genesis of mathematical knowledge in the classroom. The book developed over the period 1985-9 through several meetings, much discussion and considerable writing and redrafting. Our major concern was to try to analyse what we considered to be the most significant aspects of the relationships in order to enable mathematics educators to be better able to handle the kinds of complex issues facing all mathematics educators as we approach the end of the twentieth century. With access to mathematics education widening all the time, with a multi tude of new materials and resources being available each year, with complex cultural and social interactions creating a fluctuating context of education, with all manner of technology becoming more and more significant, and with both informal education (through media of different kinds) and non formal education (courses of training etc. ) growing apace, the nature of formal mathematical education is increasingly needing analysis.




Our Mathematical Universe


Book Description

Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.