The Neurobiology of Cognition and Behavior


Book Description

"Neurobiology of Cognition and Behavior" is a cognitive neuroscience that maps cognitive/behavioral units with anatomical regions in the human brain. The brain-behavioral associations are based on functional neuroimaging combined with lesion studies. The findings will be used to explain differences in clinical syndromes with videos of patients included.




The Cognitive Neuroscience of Social Behaviour


Book Description

The potential for cognitive neuroscience to shed light on social behaviour is increasingly being acknowledged and is set to become an important new approach in the field of psychology. Standing at the vanguard of this development, The Cognitive Neuroscience of Social Behaviour provides a state-of-the-art contribution to a subject still in its infancy. Divided into three parts, the book presents an overview of research into neural substrates of social interactions, the cognitive neuroscience of social cognition and human disorders of social behaviour and cognition.




Computational Models of Brain and Behavior


Book Description

A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.




Introduction to Social Neuroscience


Book Description

A textbook that lays down the foundational principles for understanding social neuroscience Humans, like many other animals, are a highly social species. But how do our biological systems implement social behaviors, and how do these processes shape the brain and biology? Spanning multiple disciplines, Introduction to Social Neuroscience seeks to engage students and scholars alike in exploring the effects of the brain’s perceived connections with others. This wide-ranging textbook provides a quintessential foundation for comprehending the psychological, neural, hormonal, cellular, and genomic mechanisms underlying such varied social processes as loneliness, empathy, theory-of-mind, trust, and cooperation. Stephanie and John Cacioppo posit that our brain is our main social organ. They show how the same objective relationship can be perceived as friendly or threatening depending on the mental states of the individuals involved in that relationship. They present exercises and evidence-based findings readers can put into practice to better understand the neural roots of the social brain and the cognitive and health implications of a dysfunctional social brain. This textbook’s distinctive features include the integration of human and animal studies, clinical cases from medicine, multilevel analyses of topics from genes to societies, and a variety of methodologies. Unveiling new facets to the study of the social brain’s anatomy and function, Introduction to Social Neuroscience widens the scientific lens on human interaction in society. The first textbook on social neuroscience intended for advanced undergraduates and graduate students Chapters address the psychological, neural, hormonal, cellular, and genomic mechanisms underlying the brain’s perceived connections with others Materials integrate human and animal studies, clinical cases, multilevel analyses, and multiple disciplines




Understanding the Brain


Book Description

An examination of what makes us human and unique among all creatures—our brains. No reader curious about our “little grey cells” will want to pass up Harvard neuroscientist John E. Dowling’s brief introduction to the brain. In this up-to-date revision of his 1998 book Creating Mind, Dowling conveys the essence and vitality of the field of neuroscience—examining the progress we’ve made in understanding how brains work, and shedding light on discoveries having to do with aging, mental illness, and brain health. The first half of the book provides the nuts-and-bolts necessary for an up-to-date understanding of the brain. Covering the general organization of the brain, early chapters explain how cells communicate with one another to enable us to experience the world. The rest of the book touches on higher-level concepts such as vision, perception, language, memory, emotion, and consciousness. Beautifully illustrated and lucidly written, this introduction elegantly reveals the beauty of the organ that makes us uniquely human.




Encyclopedia of Behavioral Neuroscience


Book Description

Behavioral Neuroscientists study the behavior of animals and humans and the neurobiological and physiological processes that control it. Behavior is the ultimate function of the nervous system, and the study of it is very multidisciplinary. Disorders of behavior in humans touch millions of people’s lives significantly, and it is of paramount importance to understand pathological conditions such as addictions, anxiety, depression, schizophrenia, autism among others, in order to be able to develop new treatment possibilities. Encyclopedia of Behavioral Neuroscience is the first and only multi-volume reference to comprehensively cover the foundation knowledge in the field. This three volume work is edited by world renowned behavioral neuroscientists George F. Koob, The Scripps Research Institute, Michel Le Moal, Université Bordeaux, and Richard F. Thompson, University of Southern California and written by a premier selection of the leading scientists in their respective fields. Each section is edited by a specialist in the relevant area. The important research in all areas of Behavioral Neuroscience is covered in a total of 210 chapters on topics ranging from neuroethology and learning and memory, to behavioral disorders and psychiatric diseases. The only comprehensive Encyclopedia of Behavioral Neuroscience on the market Addresses all recent advances in the field Written and edited by an international group of leading researchers, truly representative of the behavioral neuroscience community Includes many entries on the advances in our knowledge of the neurobiological basis of complex behavioral, psychiatric, and neurological disorders Richly illustrated in full color Extensively cross referenced to serve as the go-to reference for students and researchers alike The online version features full searching, navigation, and linking functionality An essential resource for libraries serving neuroscientists, psychologists, neuropharmacologists, and psychiatrists




Evolutionary Cognitive Neuroscience


Book Description

An essential reference for the new discipline of evolutionary cognitive neuroscience that defines the field's approach of applying evolutionary theory to guide brain-behavior investigations. Since Darwin we have known that evolution has shaped all organisms and that biological organs—including the brain and the highly crafted animal nervous system—are subject to the pressures of natural and sexual selection. It is only relatively recently, however, that the cognitive neurosciences have begun to apply evolutionary theory and methods to the study of brain and behavior. This landmark reference documents and defines the emerging field of evolutionary cognitive neuroscience. Chapters by leading researchers demonstrate the power of the evolutionary perspective to yield new data, theory, and insights on the evolution and functional modularity of the brain. Evolutionary cognitive neuroscience covers all areas of cognitive neuroscience, from nonhuman brain-behavior relationships to human cognition and consciousness, and each section of Evolutionary Cognitive Neuroscience addresses a different adaptive problem. After an introductory section that outlines the basic tenets of both theory and methodology of an evolutionarily informed cognitive neuroscience, the book treats neuroanatomy from ontogenetic and phylogenetic perspectives and explores reproduction and kin recognition, spatial cognition and language, and self-awareness and social cognition. Notable findings include a theory to explain the extended ontogenetic and brain development periods of big-brained organisms, fMRI research on the neural correlates of romantic attraction, an evolutionary view of sex differences in spatial cognition, a theory of language evolution that draws on recent research on mirror neurons, and evidence for a rudimentary theory of mind in nonhuman primates. A final section discusses the ethical implications of evolutionary cognitive neuroscience and the future of the field. Contributors: C. Davison Ankney, Simon Baron-Cohen, S. Marc Breedlove, William Christiana, Michael Corballis, Robin I. M. Dunbar, Russell Fernald, Helen Fisher, Jonathan Flombaum, Farah Focquaert, Steven J.C. Gaulin, Aaron Goetz, Kevin Guise, Ruben C. Gur, William D. Hopkins, Farzin Irani, Julian Paul Keenan, Michael Kimberly, Stephen Kosslyn, Sarah L. Levin, Lori Marino, David Newlin, Ivan S. Panyavin, Shilpa Patel, Webb Phillips, Steven M. Platek, David Andrew Puts, Katie Rodak, J. Philippe Rushton, Laurie Santos, Todd K. Shackelford, Kyra Singh, Sean T. Stevens, Valerie Stone, Jaime W. Thomson, Gina Volshteyn, Paul Root Wolpe




The Entangled Brain


Book Description

A new vision of the brain as a fully integrated, networked organ. Popular neuroscience accounts often focus on specific mind-brain aspects like addiction, cognition, or memory, but The Entangled Brain tackles a much bigger question: What kind of object is the brain? Neuroscientist Luiz Pessoa describes the brain as a highly networked, interconnected system that cannot be neatly decomposed into a set of independent parts. One can’t point to the brain and say, “This is where emotion happens” (or any other mental faculty). Pessoa argues that only by understanding how large-scale neural circuits combine multiple and diverse signals can we truly appreciate how the brain supports the mind. Presenting the brain as an integrated organ and drawing on neuroscience, computation, mathematics, systems theory, and evolution, The Entangled Brain explains how brain functions result from cross-cutting brain processing, not the function of segregated areas. Parts of the brain work in a coordinated fashion across large-scale distributed networks in which disparate parts of the cortex and the subcortex work simultaneously to bring about behaviors. Pessoa intuitively explains the concepts needed to formalize this idea of the brain as a complex system and how to unleash powerful understandings built with “collective computations.”




Cognitive Neuroscience


Book Description

Cognitive Neuroscience: A Reader provides the first definitive collection of readings in this burgeoning area of study.




Handbook of Developmental Cognitive Neuroscience, second edition


Book Description

The second edition of an essential resource to the evolving field of developmental cognitive neuroscience, completely revised, with expanded emphasis on social neuroscience, clinical disorders, and imaging genomics. The publication of the second edition of this handbook testifies to the rapid evolution of developmental cognitive neuroscience as a distinct field. Brain imaging and recording technologies, along with well-defined behavioral tasks—the essential methodological tools of cognitive neuroscience—are now being used to study development. Technological advances have yielded methods that can be safely used to study structure-function relations and their development in children's brains. These new techniques combined with more refined cognitive models account for the progress and heightened activity in developmental cognitive neuroscience research. The Handbook covers basic aspects of neural development, sensory and sensorimotor systems, language, cognition, emotion, and the implications of lifelong neural plasticity for brain and behavioral development. The second edition reflects the dramatic expansion of the field in the seven years since the publication of the first edition. This new Handbook has grown from forty-one chapters to fifty-four, all original to this edition. It places greater emphasis on affective and social neuroscience—an offshoot of cognitive neuroscience that is now influencing the developmental literature. The second edition also places a greater emphasis on clinical disorders, primarily because such research is inherently translational in nature. Finally, the book's new discussions of recent breakthroughs in imaging genomics include one entire chapter devoted to the subject. The intersection of brain, behavior, and genetics represents an exciting new area of inquiry, and the second edition of this essential reference work will be a valuable resource for researchers interested in the development of brain-behavior relations in the context of both typical and atypical development.