The Neuroscience of Memory


Book Description

Unlock the power of neuroscience to optimize your memory so you can stay mentally sharp. Do you feel like your memory isn’t as great as it used to be? Do you sometimes find yourself walking into a room and forgetting why? Do you misplace things more often than you used to? As we age, our memory naturally declines. But there are scientifically proven ways to enhance brain and memory function. This book, grounded in cutting-edge neuroscience, will help you get started. The Neuroscience of Memory offers a seven-step memory improvement program based on the latest research. You’ll find powerful tools to optimize your brain and memory function, increase neural connections, and stay mentally sharp both now and in the long run. You’ll learn how to “feed your brain” with good nutrition, and how exercise can help you maintain mental acuity. And finally, you’ll discover how forming new memories is a key strategy for optimizing cognitive function, and how managing stress can help you not only think better in critical moments, but also help you keep the brain cells you have. When you understand how your memory actually works, you are better equipped to optimize it. Whether you’re looking for ways to improve your memory while you are young, have noticed that your memory is declining as you age and want to improve it, or are looking for resources for dealing with Alzheimer’s (either for yourself or a loved one), this book will help you hold on to those treasured memories for as long as you possibly can.




Cognitive Neuroscience of Memory


Book Description

This book provides the only comprehensive and up-to-date treatment on the cognitive neuroscience of memory.




The Wiley Handbook on The Cognitive Neuroscience of Memory


Book Description

The Wiley Handbook on the Cognitive Neuroscience of Memory presents a comprehensive overview of the latest, cutting-edge neuroscience research being done relating to the study of human memory and cognition. Features the analysis of original data using cutting edge methods in cognitive neuroscience research Presents a conceptually accessible discussion of human memory research Includes contributions from authors that represent a “who’s who” of human memory neuroscientists from the U.S. and abroad Supplemented with a variety of excellent and accessible diagrams to enhance comprehension




Cognitive Neuroscience of Memory Consolidation


Book Description

This edited volume provides an overview the state-of-the-art in the field of cognitive neuroscience of memory consolidation. In a number of sections, the editors collect contributions of leading researchers . The topical focus lies on current issues of interest such as memory consolidation including working and long-term memory. In particular, the role of sleep in relation to memory consolidation will be addressed. The target audience primarily comprises research experts in the field of cognitive neuroscience but the book may also be beneficial for graduate students.




The Cognitive Neuroscience of Memory


Book Description

Organized to provide a background to the basic cellular mechanisms of memory and by the major memory systems in the brain, this text offers an up-to-date account of our understanding of how the brain accomplishes the phenomenology of memory.




Brain, Vision, Memory


Book Description

In these engaging tales describing the growth of knowledge about the brain—from the early Egyptians and Greeks to the Dark Ages and the Renaissance to the present time—Gross attempts to answer the question of how the discipline of neuroscience evolved into its modern incarnation through the twists and turns of history. Charles G. Gross is an experimental neuroscientist who specializes in brain mechanisms in vision. He is also fascinated by the history of his field. In these tales describing the growth of knowledge about the brain from the early Egyptians and Greeks to the present time, he attempts to answer the question of how the discipline of neuroscience evolved into its modern incarnation through the twists and turns of history. The first essay tells the story of the visual cortex, from the first written mention of the brain by the Egyptians, to the philosophical and physiological studies by the Greeks, to the Dark Ages and the Renaissance, and finally, to the modern work of Hubel and Wiesel. The second essay focuses on Leonardo da Vinci's beautiful anatomical work on the brain and the eye: was Leonardo drawing the body observed, the body remembered, the body read about, or his own dissections? The third essay derives from the question of whether there can be a solely theoretical biology or biologist; it highlights the work of Emanuel Swedenborg, the eighteenth-century Swedish mystic who was two hundred years ahead of his time. The fourth essay entails a mystery: how did the largely ignored brain structure called the "hippocampus minor" come to be, and why was it so important in the controversies that swirled about Darwin's theories? The final essay describes the discovery of the visual functions of the temporal and parietal lobes. The author traces both developments to nineteenth-century observations of the effect of temporal and parietal lesions in monkeys—observations that were forgotten and subsequently rediscovered.




The Cognitive Neuroscience of Memory


Book Description

Recent advances in techniques available to memory researchers have led to a rapid expansion in the field of cognitive neuroscience of memory. This book provides accessible coverage of four key areas of recent advance, including research on functional imaging, electrophysiological and lesion studies, and developments from the computational modelling approach. The first section reviews functional imaging studies in humans, with particular emphasis on how imaging methods have clarified the cortical areas involved in memory formation and retrieval. The second section describes electrophysiological and lesion research in monkeys, where lesion and disconnection studies are rapidly adding to our knowledge of both information processing and modulatory aspects of memory formation. In the third section, electrophysiological and lesion studies in rats are reviewed allowing for a detailed study of the role of novelty and exploration in memory formation. The final section reviews current research in computational modelling which has allowed the development of new theoretical and experimental approaches to the study of memory encoding and retrieval. This volume draws together the current developments in each field, allowing the synthesis of ideas and providing converging evidence from a range of sources. It will be a useful resource for both advanced undergraduate and postgraduate students of psychology, as well as researchers in the field and anyone with an interest in cognitive neuroscience.




Behavioral Neuroscience of Learning and Memory


Book Description

‘Behavioral Neuroscience of Learning and Memory’ brings together the opinions and expertise of some of the world’s foremost neuroscientists in the field of learning and memory research. The volume provides a broad coverage of contemporary research and thinking in this field, focusing both on well established topics such as the medial temporal lobe memory system, as well as emerging areas of research such as the role of memory in decision making and the mechanisms of perceptual learning. Key intersecting themes include the molecular and cellular mechanisms of memory formation, the multiplicity of memory systems in the brain, and the way in which technological innovation is driving discovery. Unusually for a volume of this kind, this volume brings together research from both humans and animals—often relatively separate areas of discourse—to give a more comprehensive and integrated view of the field. The book will be of interest to both established researchers who wish to broaden their knowledge of topics outside of their specific areas of expertise, and for students who need a resource to help them make sense of the vast scientific literature on this subject.




Memory and the Computational Brain


Book Description

Memory and the Computational Brain offers a provocative argument that goes to the heart of neuroscience, proposing that the field can and should benefit from the recent advances of cognitive science and the development of information theory over the course of the last several decades. A provocative argument that impacts across the fields of linguistics, cognitive science, and neuroscience, suggesting new perspectives on learning mechanisms in the brain Proposes that the field of neuroscience can and should benefit from the recent advances of cognitive science and the development of information theory Suggests that the architecture of the brain is structured precisely for learning and for memory, and integrates the concept of an addressable read/write memory mechanism into the foundations of neuroscience Based on lectures in the prestigious Blackwell-Maryland Lectures in Language and Cognition, and now significantly reworked and expanded to make it ideal for students and faculty




Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."