The American Bookseller


Book Description




The New Era in American Mathematics, 1920–1950


Book Description

"The 1920s witnessed the birth of a serious mathematical research community in America. Prior to this, mathematical research was dominated by scholars based in Europe-but World War I had made the importance of scientific and technological development clear to the American research community, resulting in the establishment of new scientific initiatives and infrastructure. Physics and chemistry were the beneficiaries of this renewed scientific focus, but the mathematical community also benefitted, and over time, began to flourish. Over the course of the next two decades, despite significant obstacles, this constellation of mathematical researchers, programs, and government infrastructure would become one of the strongest in the world. In this meticulously-researched book, Karen Parshall documents the uncertain, but ultimately successful, rise of American mathematics during this time. Drawing on research carried out in archives around the country and around the world, as well as on the secondary literature, she reveals how geopolitical circumstances shifted the course of international mathematics. She provides surveys of the mathematical research landscape in the 1920s, 30s, and 40s, introduces the key players and institutions in mathematics at that time, and documents the effect of the Great Depression and the second world war on the international mathematical community. The result is a comprehensive account of the shift of mathematics' "center of gravity" to the American stage"--







A Course in Arithmetic


Book Description

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.




Approximately Calculus


Book Description

Is there always a prime number between $n$ and $2n$? Where, approximately, is the millionth prime? And just what does calculus have to do with answering either of these questions? It turns out that calculus has a lot to do with both questions, as this book can show you. The theme of the book is approximations. Calculus is a powerful tool because it allows us to approximate complicated functions with simpler ones. Indeed, replacing a function locally with a linear--or higher order--approximation is at the heart of calculus. The real star of the book, though, is the task of approximating the number of primes up to a number $x$. This leads to the famous Prime Number Theorem--and to the answers to the two questions about primes. While emphasizing the role of approximations in calculus, most major topics are addressed, such as derivatives, integrals, the Fundamental Theorem of Calculus, sequences, series, and so on. However, our particular point of view also leads us to many unusual topics: curvature, Pade approximations, public key cryptography, and an analysis of the logistic equation, to name a few. The reader takes an active role in developing the material by solving problems. Most topics are broken down into a series of manageable problems, which guide you to an understanding of the important ideas. There is also ample exposition to fill in background material and to get you thinking appropriately about the concepts. Approximately Calculus is intended for the reader who has already had an introduction to calculus, but wants to engage the concepts and ideas at a deeper level. It is suitable as a text for an honors or alternative second semester calculus course.




Classical and Multilinear Harmonic Analysis: Volume 1


Book Description

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.







Classical Mechanics and Quantum Mechanics: An Historic-Axiomatic Approach


Book Description

This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..




Anachronisms in the History of Mathematics


Book Description

Discover essays by leading scholars on the history of mathematics from ancient to modern times in European and non-European cultures.




Guide to Reprints


Book Description