Weather Radar Technology Beyond NEXRAD


Book Description

Weather radar is a vital instrument for observing the atmosphere to help provide weather forecasts and issue weather warnings to the public. The current Next Generation Weather Radar (NEXRAD) system provides Doppler radar coverage to most regions of the United States (NRC, 1995). This network was designed in the mid 1980s and deployed in the 1990s as part of the National Weather Service (NWS) modernization (NRC, 1999). Since the initial design phase of the NEXRAD program, considerable advances have been made in radar technologies and in the use of weather radar for monitoring and prediction. The development of new technologies provides the motivation for appraising the status of the current weather radar system and identifying the most promising approaches for the development of its eventual replacement. The charge to the committee was to determine the state of knowledge regarding ground-based weather surveillance radar technology and identify the most promising approaches for the design of the replacement for the present Doppler Weather Radar. This report presents a first look at potential approaches for future upgrades to or replacements of the current weather radar system. The need, and schedule, for replacing the current system has not been established, but the committee used the briefings and deliberations to assess how the current system satisfies the current and emerging needs of the operational and research communities and identified potential system upgrades for providing improved weather forecasts and warnings. The time scale for any total replacement of the system (20- to 30-year time horizon) precluded detailed investigation of the designs and cost structures associated with any new weather radar system. The committee instead noted technologies that could provide improvements over the capabilities of the evolving NEXRAD system and recommends more detailed investigation and evaluation of several of these technologies. In the course of its deliberations, the committee developed a sense that the processes by which the eventual replacement radar system is developed and deployed could be as significant as the specific technologies adopted. Consequently, some of the committee's recommendations deal with such procedural issues.




Detection of Severe Local Storm Phenomena by Automated Interpretation of Radar and Storm Environment


Book Description

Many operational features of the WSR-88D were incorporated specifically to aid forecasters in the detection of severe local storms (damaging winds, large hail, and tornadoes). One interpretive product, the Severe Weather Potential (SWP) algorithm, yields an index proportional to the probability that an individual thunderstorm cell will soon produce any severe weather phenomena. The SWP is based solely on radar information, namely vertically-integrated liquid VIL and storm horizontal extent.










NEXRAD, Tornado Warnings, and National Weather Modernization


Book Description

Distributed to some depository libraries in microfiche.










Weather Radar Polarimetry


Book Description

This book presents the fundamentals of polarimetric radar remote sensing through understanding wave scattering and propagation in geophysical media filled with hydrometers and other objects. The text characterizes the physical, statistical, and electromagnetic properties of hydrometers and establishes the relations between radar observables and physical state parameters. It introduces advanced remote sensing techniques (such as polarimetric phased array radar) and retrieval methods for physical parameters. The book also illustrates applications of polarimetric radar measurements in hydrometer classification, particle size distribution retrievals, microphysical parameterization, and weather quantification and forecast.