Nucleon-Nucleon and Nucleon-Antinucleon Interactions


Book Description

This volume contains the Proceedings of the "XXIV. Inter nationale Universitatswochen fur Kernphysik" held in Schlad ming, Austria, in February 1985. It consists of the written versions of the lectures (3-4 hours) given at this winter school and includes also most of the seminars (30-50 minutes) presented. In choosing the topic for the 1985 meeting, our aim was to give an account of the present understanding of the nucleon-nucleon as well as nucleon-antinucleon inter actions. This field, which is of definite relevance in nuclear and particle physics, has witnessed a rapid develop ment in recent times both in theory and experiment. New evidence has emerged in the whole range from low to extremely high energies. It was an exciting experience to bring to gether knowledge from the very domains of nuclear and high energy physics as well as to meet the respective researchers. Thanks to the efforts of the lecturers, who did a splendid job in presenting the lectures and in preparing their lecture notes, a comprehensive insight into the hadronic interaction between nucleons and anti-nucleons was achieved. The lecture notes were reconsidered by the authors after the meeting and are now being published in their final form. The seminars mainly dealt with specific topics currently under investiga tion within this rather wide field. We are grateful to all authors for their efforts, as they made it possible to speed up the publication of these proceedings.




Nucleon-nucleon Interaction And The Nuclear Many-body Problem, The: Selected Papers Of Gerald E Brown And T T S Kuo


Book Description

This book provides a comprehensive overview of some key developments in the understanding of the nucleon-nucleon interaction and nuclear many-body theory. The main problems at the level of meson exchange physics have largely been solved, and we now have an effective nucleon-nucleon interaction, pioneered in a renormalization group formalism by several of us at Stony Brook and our colleagues at Naples, which is nearly universally accepted as the unique low-momentum interaction that includes all experimental information to date.Our present understanding of these issues is based on a multi-step development in which different scientific insights and a wide range of physical and mathematical methodologies fed into each other. It is best appreciated by looking at the ‘steps along the way’, starting with the pioneering work of Brueckner and his collaborators that was just as necessary and important as the insightful improvements to Brueckner's theory by Hans Bethe and his students. Moving on from there, microscopic methods for nuclear structure calculations using the Brueckner G-matrix, and later low-momentum nucleon interactions, were developed and applied. With their influential 1967 paper, Brown and Kuo prepared the effective theory that allowed the description of nuclear properties directly from the underlying nucleon-nucleon interaction. Later, the addition of ‘Brown-Rho scaling’ to the one-boson-exchange model deepened the understanding of nuclear matter saturation, carbon-14 dating and the structure of neutron stars.




Nuclear Reaction Dynamics Of Nucleon-hadron Many Body System : From Nucleon Spins And Mesons In Nuclei To Quark Lepton Nuclear Physics - Proceedings Of The 14th Rcnp Osaka International Symposium


Book Description

The 14th RCNP OSAKA International Symposium on Nuclear Reaction Dynamics of Nucleon-Hadron Many Body System was held in Osaka from December 6 to 9, 1995. The symposium covered current topics from Nucleon Spins and Mesons in Nuclei to Quark Lepton Nuclear Physics. Thus it included the field of hadron/nuclear physics from sub-GeV to multi-GeV energy region, as well as recent activities and development at RCNP. It was also intended to be a kind of winter school for young researchers/graduate students.This proceedings consists of the invited talks and lectures presented by leading physicists in the field and short oral presentations.




The Few Body Problem


Book Description

The Few Body Problem covers the proceedings of the Ninth International Conference on the Few Body Problem, held in Eugene, Oregon, USA on August 17-23, 1980. The book focuses on relativistic and particle physics, intermediate energy physics, nuclear, atomic, and molecular physics, and chemistry. The selection first offers information on nucleon-nucleon interaction in applications, including derivation of the nucleon-nucleon potential, nuclear many-body problem, and classic nuclear structure. The text also looks at three- and four-nucleon systems and graphs of three-body wave functions. The publication elaborates on K-meson experiments and non-mesonic few-nucleon phenomena. Topics include tests of invariance principles, properties of nuclei, dynamics, and hypernuclear physics. The manuscript also ponders on the Coulomb problem, atomic, molecular, and nuclear collisions, and muon capture in hydrogen isotopes. The selection is a dependable reference for readers interested in the few body problem.




Introductory Nuclear Physics


Book Description

A comprehensive, unified treatment of present-day nuclear physics-the fresh edition of a classic text/reference. "A fine and thoroughly up-to-date textbook on nuclear physics . . . most welcome." -Physics Today (on the First Edition). What sets Introductory Nuclear Physics apart from other books on the subject is its presentation of nuclear physics as an integral part of modern physics. Placing the discipline within a broad historical and scientific context, it makes important connections to other fields such as elementary particle physics and astrophysics. Now fully revised and updated, this Second Edition explores the changing directions in nuclear physics, emphasizing new developments and current research-from superdeformation to quark-gluon plasma. Author Samuel S.M. Wong preserves those areas that established the First Edition as a standard text in university physics departments, focusing on what is exciting about the discipline and providing a concise, thorough, and accessible treatment of the fundamental aspects of nuclear properties. In this new edition, Professor Wong: * Includes a chapter on heavy-ion reactions-from high-spin states to quark-gluon plasma * Adds a new chapter on nuclear astrophysics * Relates observed nuclear properties to the underlying nuclear interaction and the symmetry principles governing subatomic particles * Regroups material and appendices to make the text easier to use * Lists Internet links to essential databases and research projects * Features end-of-chapter exercises using real-world data. Introductory Nuclear Physics, Second Edition is an ideal text for courses in nuclear physics at the senior undergraduate or first-year graduate level. It is also an important resource for scientists and engineers working with nuclei, for astrophysicists and particle physicists, and for anyone wishing to learn more about trends in the field.










Possible Complementary Cosmic-ray Systems


Book Description

Arguments are presented for the possible existence of antinuclei of charge Absolute Value of Z greater than 2 and particularly galactic cosmic antinuclei. Theoretical antinucleus-nucleus optical model cross sections are calculated and presented for the first time.




Nuclear Methods And Nuclear Equation Of State


Book Description

The theoretical study of the nuclear equation of state (EOS) is a field of research which deals with most of the fundamental problems of nuclear physics. This book gives an overview of the present status of the microscopic theory of the nuclear EOS. Its aim is essentially twofold: first, to serve as a textbook for students entering the field, by covering the different subjects as exhaustively and didactically as possible; second, to be a reference book for all researchers active in the theory of nuclear matter, by providing a report on the latest developments. Special emphasis is given to the numerous open problems existing at present and the prospects for their possible solutions.The general framework of the different approaches presented in the book is the meson theory of nuclear forces — where no free parameter is introduced — and the many-body treatment of nucleon-nucleon correlations. The ultimate hope of this world-wide effort is the understanding of the structure of nuclear matter, both in the ground state and at finite temperature.The main audience addressed is the community of theoretical nuclear physicists, but nuclear experimentalists and astrophysicists will also find in the book an extensive amount of material of direct interest for their everyday work, particularly for those studying heavy-ion collisions, where the nuclear EOS is of special relevance. Finally, theoretical physicists working on elementary particle theory could find in the book some stimulating ideas and problems directly related to their field.