The P53 Family


Book Description

This volume offers a comprehensive review of the functions of the p53 family. The contributors examine the normal roles of these transcription factors, their evolution, the regulatory mechanisms that control p53 activity, and the part played by p53 mutations in tumorigenesis.




The P53 Protein


Book Description

Decades of research on the tumor suppressor p53 have revealed that it plays a significant role as a "guardian of the genome," protecting cells against genotoxic stress. In recent years, p53 research has begun to move into the clinic in attempts to understand how p53 is frequently inactivated in-and sometimes even promotes-human cancer. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine covers the rapid progress that has recently been made in basic and clinical research on p53. The contributors review new observations about its basic biology, providing updates on the functions of its isoforms and domains, the myriad stresses and signals that trigger its activation or repression, and its downstream effects on genome stability and the cell cycle that enforce tumor suppression in different cell and tissue types. They also discuss how p53 dysfunction contributes to cancer, exploring the various inherited and somatic mutations in the human TP53 gene, the impact of mutant p53 proteins on tumorigenesis, and the prognostic value and clinical outcomes of these mutations. Drugs that are being developed to respond to tumors harboring aberrant p53 are also described. This book is therefore essential reading for all cancer biologists, cell and molecular biologists, and pharmacologists concerned with the treatment of this disease.




The p53 Tumor Suppressor Pathway and Cancer


Book Description

The current year (2004) marks the Silver Anniversary of the discovery of the p53 tumor suppressor. The emerging ?eld ?rst considered p53 as a viral antigen and then as an oncogene that cooperates with activated ras in transforming primary cells in culture. Fueling the concept of p53 acting as a transforming factor, p53 expression was markedly elevated in various transformed and tumorigenic cell lines when compared to normal cells. In a simple twist of fate, most of the studies conducted in those early years inadvertently relied on a point mutant of p53 that had been cloned from a normal mouse genomic library. A bona ?de wild-type p53 cDNA was subsequently isolated, ironically, from a mouse teratocarcinoma cell line. A decade after its discovery, p53 was shown to be a tumor suppressor that protects against cancer. It is now recognized that approximately half of all human tumors arise due to mutations within the p53 gene. As remarkable as this number may seem, it signi?cantly underrepresents how often the p53 pathway is targeted during tumorigenesis. It is my personal view, as well as many in the p53 ?eld, that the p53-signaling pathway is corrupted in nearly 100% of tumors. If you are interested in understanding cancer and how it develops, you must begin by studying p53 and its pathway. After demonstrating that p53 functions as a tumor suppressor the ?eld exploded and p53 became a major focus of scientists around the world.




The p53 Tumor Suppressor Pathway and Cancer


Book Description

The current year (2004) marks the Silver Anniversary of the discovery of the p53 tumor suppressor. The emerging ?eld ?rst considered p53 as a viral antigen and then as an oncogene that cooperates with activated ras in transforming primary cells in culture. Fueling the concept of p53 acting as a transforming factor, p53 expression was markedly elevated in various transformed and tumorigenic cell lines when compared to normal cells. In a simple twist of fate, most of the studies conducted in those early years inadvertently relied on a point mutant of p53 that had been cloned from a normal mouse genomic library. A bona ?de wild-type p53 cDNA was subsequently isolated, ironically, from a mouse teratocarcinoma cell line. A decade after its discovery, p53 was shown to be a tumor suppressor that protects against cancer. It is now recognized that approximately half of all human tumors arise due to mutations within the p53 gene. As remarkable as this number may seem, it signi?cantly underrepresents how often the p53 pathway is targeted during tumorigenesis. It is my personal view, as well as many in the p53 ?eld, that the p53-signaling pathway is corrupted in nearly 100% of tumors. If you are interested in understanding cancer and how it develops, you must begin by studying p53 and its pathway. After demonstrating that p53 functions as a tumor suppressor the ?eld exploded and p53 became a major focus of scientists around the world.







Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.




Clinical Gynecology


Book Description

Written with the busy practice in mind, this book delivers clinically focused, evidence-based gynecology guidance in a quick-reference format. It explores etiology, screening, tests, diagnosis, and treatment for a full range of gynecologic health issues. The coverage includes the full range of gynecologic malignancies, reproductive endocrinology and infertility, infectious diseases, urogynecologic problems, gynecologic concerns in children and adolescents, and surgical interventions including minimally invasive surgical procedures. Information is easy to find and absorb owing to the extensive use of full-color diagrams, algorithms, and illustrations. The new edition has been expanded to include aspects of gynecology important in international and resource-poor settings.




Genes and Cancer


Book Description

This work serves as an introduction to the applications of molecular biology in the field of oncology. It provides a basic understanding of the genetic events involved in fully developed human cancer, including research into inherited and acquired gene defects initiating new neoplasms and the subsequent genetic alterations involved in tumor progression. Some of the specific topics explored include gene control, molecular therapy and antibodies, drug resistance, growth factors and receptors, and tumor biology. While intended primarily as an advanced text for oncologists, postgraduate molecular geneticists and molecular biologists, the book will certainly be of interest to other researchers who frequently encounter cancer in their practice.




Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging


Book Description

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections. - Presents the most advanced information regarding the role of the autophagic system in life and death - Examines whether autophagy acts fundamentally as a cell survivor or cell death pathway or both - Introduces new, more effective therapeutic strategies in the development of targeted drugs and programmed cell death, providing information that will aid in preventing detrimental inflammation - Features recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, including atherosclerosis and CNS tumors, and their development and treatment - Includes chapters authored by leaders in the field around the globe—the broadest, most expert coverage available




25 Years of p53 Research


Book Description

p53 has emerged as a key tumor suppressor and important target for novel cancer therapy. This book, written by world-leading p53 researchers including many of those who have shaped the field over the past 25 years, provides unique insights into the progress of the field and the prospects for better cancer diagnosis and therapy in the future.