The Penrose Transform and Analytic Cohomology in Representation Theory


Book Description

This book contains refereed papers presented at the AMS-IMS-SIAM Summer Research Conference on the Penrose Transform and Analytic Cohomology in Representation Theory held in the summer of 1992 at Mount Holyoke College. The conference brought together some of the top experts in representation theory and differential geometry. One of the issues explored at the conference was the fact that various integral transforms from representation theory, complex integral geometry, and mathematical physics appear to be instances of the same general construction, which is sometimes called the ``Penrose transform''. There is considerable scope for further research in this area, and this book would serve as an excellent introduction.




The Penrose Transform


Book Description

Geared toward students of physics and mathematics; presupposes no familiarity with twistor theory. "A huge amount of information, well organized and condensed into less than 200 pages." — Mathematical Reviews. 1989 edition.




Recent Developments in Optimization Theory and Nonlinear Analysis


Book Description

This volume contains the refereed proceedings of the special session on Optimization and Nonlinear Analysis held at the Joint American Mathematical Society-Israel Mathematical Union Meeting which took place at the Hebrew University of Jerusalem in May 1995. Most of the papers in this book originated from the lectures delivered at this special session. In addition, some participants who didn't present lectures and invited speakers who were unable to attend contributed their work. The fields of optimization theory and nonlinear analysis continue to be very active. This book presents not only the wide spectrum and diversity of the results, but also their manifold connections to other areas, such as differential equations, functional analysis, operator theory, calculus of variations, numerical analysis, and mathematical programming. In reading this book one encounters papers that deal, for example, with convex, quasiconvex and generalized convex functions, fixed and periodic points, fractional-linear transformations, moduli of convexity, monontone operators, Morse lemmas, Navier-Stokes equations, nonexpansive maps, nonsmooth analysis, numerical stability, products of projections, steepest descent, the Leray-Schauder degree, the turnpike property, and variational inequalities.




Harmonic Analysis and Nonlinear Differential Equations


Book Description

There are also several survey articles on recent developments in multiple trigonometric series, dyadic harmonic analysis, special functions, analysis on fractals, and shock waves, as well as papers with new results in nonlinear differential equations. These survey articles, along with several of the research articles, cover a wide variety of applications such as turbulence, general relativity and black holes, neural networks, and diffusion and wave propagation in porous media.




Multidimensional Complex Analysis and Partial Differential Equations


Book Description

This collection of papers by outstanding contributors in analysis, partial differential equations and several complex variables is dedicated to Professor Treves in honour of his 65th birthday. There are five excellent survey articles covering analytic singularities, holomorphically nondegenerate algebraic hypersurfaces, analyticity of CR mappings, removable singularities of vector fields and local solvability for systems of vector fields. The other papers are original research contributions on topics such as Klein-Gordon and Dirac equations, Toeplitz operators, elliptic structures, complexification of Lie groups, and pseudo-differential operators.




Homotopy Theory and Its Applications


Book Description

This book is the result of a conference held to examine developments in homotopy theory in honor of Samuel Gitler in July 1993 (Cocoyoc, Mexico). It includes several research papers and three expository papers on various topics in homotopy theory. The research papers discuss the following: BL application of homotopy theory to group theory BL fiber bundle theory BL homotopy theory The expository papers consider the following topics: BL the Atiyah-Jones conjecture (by C. Boyer) BL classifying spaces of finite groups (by J. Martino) BL instanton moduli spaces (by J. Milgram) Homotopy Theory and Its Applications offers a distinctive account of how homotopy theoretic methods can be applied to a variety of interesting problems.




Set Theory


Book Description

This book consists of papers presented at the first three meetings of the Boise Extravaganza in Set Theory (BEST) at Boise State University, Idaho, in 1992, 1993, and 1994. Articles in this volume present recent results in several areas of set theory.




Finite Fields: Theory, Applications, and Algorithms


Book Description

Because of their applications in so many diverse areas, finite fields continue to play increasingly important roles in various branches of modern mathematics, including number theory, algebra, and algebraic geometry, as well as in computer science, information theory, statistics, and engineering. Computational and algorithmic aspects of finite field problems also continue to grow in importance. This volume contains the refereed proceedings of a conference entitled Finite Fields: Theory, Applications and Algorithms, held in August 1993 at the University of Nevada at Las Vegas. Among the topics treated are theoretical aspects of finite fields, coding theory, cryptology, combinatorial design theory, and algorithms related to finite fields. Also included is a list of open problems and conjectures. This volume is an excellent reference for applied and research mathematicians as well as specialists and graduate students in information theory, computer science, and electrical engineering.




Cohomological Induction and Unitary Representations (PMS-45), Volume 45


Book Description

This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.




Differential Topology, Foliations, and Group Actions


Book Description

This volume contains the proceedings of the Workshop on Topology held at the Pontificia Universidade Catolica in Rio de Janeiro in January 1992. Bringing together about one hundred mathematicians from Brazil and around the world, the workshop covered a variety of topics in differential and algebraic topology, including group actions, foliations, low-dimensional topology, and connections to differential geometry. The main concentration was on foliation theory, but there was a lively exchange on other current topics in topology. The volume contains an excellent list of open problems in foliation research, prepared with the participation of some of the top world experts in this area. Also presented here are two surveys on group actions---finite group actions and rigidity theory for Anosov actions---as well as an elementary survey of Thurston's geometric topology in dimensions 2 and 3 that would be accessible to advanced undergraduates and graduate students.