Protection of Functional Groups in Peptide Synthesis


Book Description

The Peptides: Analysis, Synthesis, Biology, Volume 3: Protection of Functional Groups in Peptide Synthesis focuses on protection of functional groups in peptide synthesis. This book consists of seven chapters. Chapter 1 reviews the large variety of amine protecting groups. The protection of carboxyl groups is described in Chapter 2, while the chemistry of sulfhydryl group protection in peptide synthesis is discussed in Chapter 3. Chapter 4 covers the protection of the hydroxyl groups of serine, threonine, tyrosine, and other hydroxyl-containing amino acids. Differential protection and selective deprotection in peptide synthesis is deliberated in Chapter 5. In chapter 6, the opportunities and constraints of the tactics of minimal protection of side-chain functions during peptide synthesis are reviewed. The last chapter is devoted to the interesting aspects of dual function groups. This volume is recommended for specialists and researchers concerned with peptide and protein research.




Chemistry of Peptide Synthesis


Book Description

Chemistry of Peptide Synthesis is a complete overview of how peptides are synthesized and what techniques are likely to generate the most desirable reactions. Incorporating elements from the author's role of Career Investigator of the Medical Research Council of Canada and his extensive teaching career, the book emphasizes learning rather th




Solid-Phase Peptide Synthesis


Book Description

The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volumehas been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. More than 275 volumes have been published (all of them still in print) and much of the material is relevant even today-truly an essential publication for researchers in all fields of life sciences. Key Features * Solid-phase peptide synthesis * Applications of peptides for structural and biological studies * Characterization of synthetic peptides




Fmoc Solid Phase Peptide Synthesis


Book Description

Since the publication of Atherton and Sheppard's volume, the technique of Fmoc solid-phase peptide synthesis has matured considerably and is now the standard approach for the routine production of peptides. The focus of this new volume is much broader, and covers the essential procedures.




Peptide Synthesis and Applications


Book Description

Peptides are used ubiquitously for studies in biology, biochemistry, chemical biology, peptide based medicinal chemistry, and many other areas of research. There is a number of marketed peptide drugs, and the prospects for the development of new peptide drugs are very encouraging. The second edition of Peptide Synthesis and Applications expands upon the previous editions with current, detailed methodologies for peptide synthesis. With new chapters on laboratory protocols for both the specialist and the non-specialist. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Peptide Synthesis and Application, Second Edition seeks to aid scientists in understanding different approaches to the synthesis of peptides by using a broad range of methods and strategies.




Chemical Approaches to the Synthesis of Peptides and Proteins


Book Description

Organic chemists working on the synthesis of natural products have long found a special challenge in the preparation of peptides and proteins. However, more reliable, more efficient synthetic preparation methods have been developed in recent years. This reference evaluates the most important synthesis methods available today, and also considers methods that show promise for future applications. This text describes the state of the art in efficient synthetic methods for the synthesis of both natural and artificial large peptide and protein molecules. Subjects include an introduction to basic topics, linear solid-phase synthesis of peptides, peptide synthesis in solution, convergent solid-phase synthesis, methods for the synthesis of branched peptides, formation of disulfide bridges, and more. The book emphasizes strategies and tactics that must be considered for the successful synthesis of peptides.




Greene's Protective Groups in Organic Synthesis


Book Description

The Fourth Edition of Greene's Protective Groups in Organic Synthesis continues to be an indispensable reference for controlling the reactivity of the most common functional groups during a synthetic sequence. This new edition incorporates the significant developments in the field since publication of the third edition in 1998, including... New protective groups such as the fluorous family and the uniquely removable 2-methoxybenzenesulfonyl group for the protection of amines New techniques for the formation and cleavage of existing protective groups, with examples to illustrate each new technique Expanded coverage of the unexpected side reactions that occur with protective groups New chart covering the selective deprotection of silyl ethers 3,100 new references from the professional literature The content is organized around the functional group to be protected, and ranges from the simplest to the most complex and highly specialized protective groups.




Opioid Peptides: Biology, Chemistry, and Genetics


Book Description

The Peptides: Analysis, Synthesis, Biology, Volume 6: Opioid Peptides: Biology, Chemistry, and Genetics presents a biological topic of peptide research. This book is divided into nine chapters. Chapter 1 reviews the opioid peptide precursors and their genes. The proenkephalin and products of its processing are discussed in Chapter 2. In Chapter 3, the role of pro-opiomelanocortin (POMC) as a protein at the interface of the endocrine and nervous systems is examined. Chapter 4 provides a comprehensive account of the biology and chemistry of the dynorphin peptides. The opioid receptors are described in Chapter 5. Chapter 6 evaluates the structure-activity relationships of ?-endorphin, while Chapter 7 considers the conformational analysis of enkephalins and conformation-activity relationships. The structure-activity relationships among enkephalin peptides are elaborated in Chapter 8. The last chapter is devoted to the clinical significance of opioid peptides in humans. This publication is a good reference for biologists, specialists, and researchers concerned with peptides and proteins.




Peptide Synthesis


Book Description

This book provides a variety of procedures for synthetically producing peptides and their derivatives, ensuring the kind of precision that is of paramount importance for successful synthesis. Numerous techniques relevant to drugs and vaccines are explored, such as conjugation and condensation methodologies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Peptide Synthesis: Methods and Protocols serves as an essential guide to the many crucial processes that will allow researchers to efficiently prepare, purify, characterize, and use peptides for chemical, biochemical, and biological studies.




Amino Acids: Insights and Roles in Heterocyclic Chemistry


Book Description

This is the first volume of a first-of-its-kind four-volume book set that provides readers with up-to-date information on α-amino acids, the potential challenges in working with α-amino acids, the protecting groups for the carboxyl, amino and side chain groups of the amino acids, and the most popular heterocyclic compounds that are originating from α-amino acids. These heterocyclic compounds include hydantoins, thiohydantoins (including 2-thiohydantoins, 4-thiohydantoins, 2,4-dithiohydantoins), 2,5-diketopiperazines, N-carboxyanhydrides, N-thiocarboxyanhydrides, sydnones, sydnonimines, azlactones, pseudoazlactones, and oxazolidin-5-ones. This is the first resource to comprehensively collect all the heterocycles that can be directly prepared from α-amino acids. In addition, almost all kinds of synthetic methods for a particular type of heterocycles from α-amino acids are included, along with the detailed mechanistic discussions and experimental procedures. Volume 1: Protecting Groups collects and discusses the 260 protecting groups relating to amino acids, which have been organized by carboxyl group, amino group, and side chain group. The conditions to introduce these protecting groups as well as their deprotecting procedures have also been incorporated, along with the physical properties, solvent effects, and temperature effects on the solubility of amino acids. It presents the solubility of glycine and phenylalanine in a variety of solvent systems to show the impact on amino acid, where glycine generally represents the polar amino acid whereas phenylalanine represents the amino acid of non-polar side chain. The other volumes include: Volume 2: Hydantoins, Thiohydantoins, and 2,5-Diketopiperazines Volume 3: N-Carboxyanhydrides, N-Thiocarboxyanhydrides, and Sydnones Volume 4: Azlactones and Oxazolidin-5-ones All together, this unique 4-volume set thoroughly covers the two types of heterocyclic compounds that are originated from alpha-amino acids, providing carefully compiled updated information with detailed examples. The author has shared many thoughtful insights based on his strong background in physical organic chemistry. The volumes will be highly valuable for graduate students and senior students, as well as for professors and researchers working in the field of medicinal and pharmaceutical chemistry, organic chemistry, organic synthesis, heterocycles, and proteins and peptides.