The Perceptron


Book Description




50 years after the perceptron, 25 years after PDP: Neural computation in language sciences


Book Description

This Research Topic aims to showcase the state of the art in language research while celebrating the 25th anniversary of the tremendously influential work of the PDP group, and the 50th anniversary of the perceptron. Although PDP models are often the gold standard to which new models are compared, the scope of this Research Topic is not constrained to connectionist models. Instead, we aimed to create a landmark forum in which experts in the field define the state of the art and future directions of the psychological processes underlying language learning and use, broadly defined. We thus called for papers involving computational modeling and original research as well as technical, philosophical, or historical discussions pertaining to models of cognition. We especially encouraged submissions aimed at contrasting different computational frameworks, and their relationship to imaging and behavioral data.




Mastering Machine Learning Algorithms


Book Description

Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.




Perceptrons


Book Description

What Is Perceptrons The perceptron is a technique for supervised learning of binary classifiers that is used in the field of machine learning. A function known as a binary classifier is one that can determine whether or not an input, which is often portrayed by a vector of numbers, is a member of a particular category. It is a kind of linear classifier, which means that it is a classification method that forms its predictions on the basis of a linear predictor function by combining a set of weights with the feature vector. In other words, it creates its predictions based on a linear predictor function. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Perceptron Chapter 2: Supervised learning Chapter 3: Support vector machine Chapter 4: Linear classifier Chapter 5: Pattern recognition Chapter 6: Artificial neuron Chapter 7: Hopfield network Chapter 8: Backpropagation Chapter 9: Feedforward neural network Chapter 10: Multilayer perceptron (II) Answering the public top questions about perceptrons. (III) Real world examples for the usage of perceptrons in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of perceptrons. What Is Artificial Intelligence Series The Artificial Intelligence eBook series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The Artificial Intelligence eBook series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.




Models of Neurons and Perceptrons: Selected Problems and Challenges


Book Description

This book describes models of the neuron and multilayer neural structures, with a particular focus on mathematical models. It also discusses electronic circuits used as models of the neuron and the synapse, and analyses the relations between the circuits and mathematical models in detail. The first part describes the biological foundations and provides a comprehensive overview of the artificial neural networks. The second part then presents mathematical foundations, reviewing elementary topics, as well as lesser-known problems such as topological conjugacy of dynamical systems and the shadowing property. The final two parts describe the models of the neuron, and the mathematical analysis of the properties of artificial multilayer neural networks. Combining biological, mathematical and electronic approaches, this multidisciplinary book it useful for the mathematicians interested in artificial neural networks and models of the neuron, for computer scientists interested in formal foundations of artificial neural networks, and for the biologists interested in mathematical and electronic models of neural structures and processes.




Support Vector Machines and Perceptrons


Book Description

This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>




The Nature of Code


Book Description

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.




Machine Learning Methods


Book Description

This book provides a comprehensive and systematic introduction to the principal machine learning methods, covering both supervised and unsupervised learning methods. It discusses essential methods of classification and regression in supervised learning, such as decision trees, perceptrons, support vector machines, maximum entropy models, logistic regression models and multiclass classification, as well as methods applied in supervised learning, like the hidden Markov model and conditional random fields. In the context of unsupervised learning, it examines clustering and other problems as well as methods such as singular value decomposition, principal component analysis and latent semantic analysis. As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic principles, underlying concepts and algorithms enable readers to grasp basic techniques, while the rigorous mathematical derivations and specific examples included offer valuable insights into machine learning.




Handbook of Neural Computation


Book Description

The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar probl




The Oxford Linear Algebra for Scientists


Book Description

This textbook provides a modern introduction to linear algebra, a mathematical discipline every first year undergraduate student in physics and engineering must learn. A rigorous introduction into the mathematics is combined with many examples, solved problems, and exercises as well as scientific applications of linear algebra. These include applications to contemporary topics such as internet search, artificial intelligence, neural networks, and quantum computing, as well as a number of more advanced topics, such as Jordan normal form, singular value decomposition, and tensors, which will make it a useful reference for a more experienced practitioner. Structured into 27 chapters, it is designed as a basis for a lecture course and combines a rigorous mathematical development of the subject with a range of concisely presented scientific applications. The main text contains many examples and solved problems to help the reader develop a working knowledge of the subject and every chapter comes with exercises.