Small Earth Dams


Book Description







Earthquake Engineering for Concrete Dams


Book Description

The hazard posed by large dams has long been known. Although no concrete dam has failed as a result of earthquake activity, there have been instances of significant damage. Concerns about the seismic safety of concrete dams have been growing recently because the population at risk in locations downstream of major dams continues to expand and because the seismic design concepts in use at the time most existing dams were built were inadequate. In this book, the committee evaluates current knowledge about the earthquake performance of concrete dams, including procedures for investigating the seismic safety of such structures. Earthquake Engineering for Concrete Dams specifically informs researchers about state-of-the-art earthquake analysis of concrete dams and identifies subject areas where additional knowledge is needed.




Seismic Performance Analysis of Concrete Gravity Dams


Book Description

This book evaluates the seismic performance of concrete gravity dams, considering the effects of strong motion duration, mainshock-aftershock seismic sequence, and near-fault ground motion. It employs both the extended finite element method (XFEM) and concrete damaged plasticity (CDP) models to characterize the mechanical behavior of concrete gravity dams under strong ground motions, including the dam-reservoir-foundation interaction. In addition, it discusses the effects of the initial crack, earthquake direction, and cross-stream seismic excitation on the nonlinear dynamic response to strong ground motions, and on the damage-cracking risk of concrete gravity dams. This book provides a theoretical basis for the seismic performance evaluation of high dams, and can also be used as a reference resource for researchers and graduate students engaged in the seismic design of high dams.




Seismic Safety Evaluation of Concrete Dams


Book Description

The consequences of a large dam failing can be disastrous. However, predicting the performance of concrete dams during earthquakes is one of the most complex and challenging problems in structural dynamics. Based on a nonlinear approach, Seismic Safety Evaluation of Concrete Dams allows engineers to build models that account for nonlinear phenomena such as vertical joint slippage, cracks, and cavitation. This yields more accurate estimates. Advanced but readable, this book is the culmination of the work carried out by Tsinghua University Research Group on Earthquake Resistance on Dams over the last two decades. Nonlinearity characteristics of high concrete dams, seismic analysis methods, evaluation models A systematic approach to nonlinear analysis and seismic safety evaluation of concrete dams Includes nonlinear fracture of dam-water-foundation interaction system, dynamic fluid-structure Covers soil-structure interactions, and meso-scale mechanical behavior of concrete are all international front issues of the field




Earthquake Engineering for Dams and Reservoirs


Book Description

Earthquake Engineering for Dams and Reservoirs is an invaluable source for any engineer, or designer, tasked with building, retrofitting or maintaining dams in all seismically active regions to make decisions on the type of dam structure required for new projects and understand the issues that face existing dams and how to mitigate them.