The Phase Rule and Its Applications


Book Description

DigiCat Publishing presents to you this special edition of "The Phase Rule and Its Applications" by Alexander Findlay. DigiCat Publishing considers every written word to be a legacy of humankind. Every DigiCat book has been carefully reproduced for republishing in a new modern format. The books are available in print, as well as ebooks. DigiCat hopes you will treat this work with the acknowledgment and passion it deserves as a classic of world literature.




The Boundary Theory of Phase Diagrams and Its Application


Book Description

The Boundary Theory of Phase Diagrams and Its Application -- Rules for Phase Diagram Construction with Phase Regions and Their Boundaries presents a novel theory of phase diagrams. Thoroughly revised on the basis of the Chinese edition and rigorously reviewed, this book inspects the general feature and structure of phase diagrams, and reveals that there exist actually two categories of boundaries. This innovative boundary theory has solved many difficulties in understanding phase diagrams, and also finds its application in constructing multi-component phase diagrams or in calculating high-pressure phase diagrams. Researchers and engineers as well as graduate students in the areas of chemistry, metallurgy and materials science will benefit from this book. Prof. Muyu Zhao was the recipient of the 1998 Prize for Progress in Science and Technology (for his work on the boundary theory of phase diagrams) awarded by the National Commission of Education, China, and many other prizes.




The Encyclopedia of Mineralogy


Book Description

The Encyclopedia of Mineralogy provides comprehensive, basic treatment of the science of mineralogy. More than 140 articles by internationally known scholars and research workers describe specific areas of mineralogical interest, and a glossary of 3000 entries defines all valid mineral species and many related mineral names. In addition to traditional topics - descriptions of major structural groups, methods of mineral analysis, and the paragenesis of mineral species - this volume embraces such subjects as asbestiform minerals, minerals found in caves and in living beings, and gems and gemology. It includes current data on the latest in our geological inventories - lunar minerals. It describes the properties, characteristics, and uses of industrial resources such as abrasive materials and Portland cement. A directory will guide traveling mineralogists to the major mineralogical museums of the world, with their special interests noted. Clear technical illustrations supplement the text throughout. To help the student and professional find particular information there are a comprehensive subject index, extensive cross-references of related topics (whether in this volume or others in the series), and reference lists to background information and detailed advanced treatment of all topics. The Encyclopedia of Mineralogy is a valuable reference and source for professionals in all geological sciences, for science teachers at all levels, for collectors and `rock hounds', and for all who are curious about the minerals on earth or those brought back from outer space.







Transport Phenomena in Multiphase Systems


Book Description

Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors




Introduction to Phase Equilibria in Ceramic Systems


Book Description

Written by a leading practitioner and teacher in the field of ceramic science and engineering, this outstanding text provides advanced undergraduate- and graduate-level students with a comprehensive, up-to-date Introduction to Phase Equilibria in Ceramic Systems. Building upon a concise definition of the phase rule, the book logically proceeds from one- and two-component systems through increasingly complex systems, enabling students to utilize the phase rule in real applications. Unique because of its emphasis on phase diagrams, timely because of the rising importance of ceramic applications, practical because of its pedagogical approach, Introduction to Phase Equilibria in Ceramic Systems offers end-of-chapter review problems, extensive reading lists, a solid thermodynamic foundation and clear perspectives on the special properties of ceramics as compared to metals.This authoritative volume fills a broad gap in the literature, helping undergraduate- and graduate-level students of ceramic engineering and materials science to approach this demanding subject in a rational, confident fashion. In addition, Introduction to Phase Equilibria in Ceramic Systems serves as a valuable supplement to undergraduate-level metallurgy programs.




Phase Diagrams and Heterogeneous Equilibria


Book Description

This advanced comprehensive textbook introduces the practical application of phase diagrams to the thermodynamics of materials consisting of several phases. It describes the fundamental physics and thermodynamics as well as experimental methods, treating all material classes: metals, glasses, ceramics, polymers, organic materials, aqueous solutions. With many application examples and realistic cases from chemistry and materials science, it is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Also concisely presented are the thermodynamics and composition of polymer systems. This innovative text puts this powerful analytical approach into a readily understandable and practical context, perhaps for the first time.




Phase Diagrams and Thermodynamic Modeling of Solutions


Book Description

Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. - Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical thermodynamics - Provides an in-depth understanding of phase equilibria - Includes information that can be used as a text for graduate courses on thermodynamics and phase diagrams, or on solution modeling - Covers several types of phase diagrams (paraequilibrium, solidus projections, first-melting projections, Scheil diagrams, enthalpy diagrams), and more




Methods for Phase Diagram Determination


Book Description

Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides.* Extensive discussion on methodologies of experimental measurements and data assessments * Written by experts around the world, covering both traditional and combinatorial methodologies* A must-read for experimental measurements of phase diagrams




Phase Equilibria, Phase Diagrams and Phase Transformations


Book Description

Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.