The Philosophy of Mathematics and Natural Laws


Book Description

First published in 1997, this title is a sequel to Dr Noel Curran's first book The Logical Universe: The Real Universe (published by Ashgate under the Avebury imprint, 1994). The philosophy of mathematics in this book is based on ideas of Sir William Rowan Hamilton on the ordinal character of numbers, the real numbers, the measure numbers, scalar numbers and the extension to vectors. The final extension is to Hamilton’s quaternions. This algebra is interpreted as the mathematics of spin. This led to a a new theory of time and space which is Euclidian. The motion of spin is absolute, no frame of reference is required. If time is assumed to have a beginning it would be asymmetric with an arrow. This concept is applied to the laws of nature, which are symmetrical. This is another Copernican Revolution in three aspects: absolute time is restored, time has an arrow - is asymmetric, and thirdly the theory is based on the motion of spin which is absolute and more fundamental than the motion of translation. This opens the way to the final unification of physics.







Mind and Nature


Book Description

A new study of the mathematical-physical mode of cognition.




The Language of Nature


Book Description

Galileo’s dictum that the book of nature “is written in the language of mathematics” is emblematic of the accepted view that the scientific revolution hinged on the conceptual and methodological integration of mathematics and natural philosophy. Although the mathematization of nature is a distinctive and crucial feature of the emergence of modern science in the seventeenth century, this volume shows that it was a far more complex, contested, and context-dependent phenomenon than the received historiography has indicated, and that philosophical controversies about the implications of mathematization cannot be understood in isolation from broader social developments related to the status and practice of mathematics in various commercial, political, and academic institutions. Contributors: Roger Ariew, U of South Florida; Richard T. W. Arthur, McMaster U; Lesley B. Cormack, U of Alberta; Daniel Garber, Princeton U; Ursula Goldenbaum, Emory U; Dana Jalobeanu, U of Bucharest; Douglas Jesseph, U of South Florida; Carla Rita Palmerino, Radboud U, Nijmegen and Open U of the Netherlands; Eileen Reeves, Princeton U; Christopher Smeenk, Western U; Justin E. H. Smith, U of Paris 7; Kurt Smith, Bloomsburg U of Pennsylvania.




Philosophy of Mathematics


Book Description

The philosophy of mathematics plays a vital role in the mature philosophy of Charles S. Peirce. Peirce received rigorous mathematical training from his father and his philosophy carries on in decidedly mathematical and symbolic veins. For Peirce, math was a philosophical tool and many of his most productive ideas rest firmly on the foundation of mathematical principles. This volume collects Peirce's most important writings on the subject, many appearing in print for the first time. Peirce's determination to understand matter, the cosmos, and "the grand design" of the universe remain relevant for contemporary students of science, technology, and symbolic logic.




Philosophy of Mathematics


Book Description

A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.




The Applicability of Mathematics as a Philosophical Problem


Book Description

This book analyzes the different ways mathematics is applicable in the physical sciences, and presents a startling thesis--the success of mathematical physics appears to assign the human mind a special place in the cosmos. Mark Steiner distinguishes among the semantic problems that arise from the use of mathematics in logical deduction; the metaphysical problems that arise from the alleged gap between mathematical objects and the physical world; the descriptive problems that arise from the use of mathematics to describe nature; and the epistemological problems that arise from the use of mathematics to discover those very descriptions. The epistemological problems lead to the thesis about the mind. It is frequently claimed that the universe is indifferent to human goals and values, and therefore, Locke and Peirce, for example, doubted science's ability to discover the laws governing the humanly unobservable. Steiner argues that, on the contrary, these laws were discovered, using manmade mathematical analogies, resulting in an anthropocentric picture of the universe as "user friendly" to human cognition--a challenge to the entrenched dogma of naturalism.




An Introduction to the Philosophy of Mathematics


Book Description

A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.




A Course of Philosophy and Mathematics


Book Description

Intro -- Contents -- Prolegomena by Giuliano di Bernardo -- Preface -- The Scope and the Structure of this Project -- Acknowledgments -- Chapter 1 -- Philosophy, Science, and The Dialectic of Rational Dynamicity -- 1.1. The Meaning of Philosophy and Preliminary Concepts -- 1.2. The Abstract Study of a Being -- 1.2.1. Epistemological Presuppositions -- 1.2.2. The Significance and the Presence of a Being -- 1.2.3. The Knowledge of a Being -- Structuralism in Physics -- Newton's Three Laws of Kinematics -- Newton's Law of Universal Gravitation -- Conservation of Mass and Energy -- Laws of Thermodynamics -- Electrostatic Laws -- Quantum Mechanics -- Structuralism in Biology -- Structuralism in Linguistics -- Philosophical Structuralism and Hermeneutics -- 1.2.4. The Modes of Being -- 1.3. The Dialectic of Rational Dynamicity -- 1.3.1. Dynamized Time -- 1.3.2. Dynamized Space and the Problem of the Extension of the Quantum Formalism -- 1.3.3. Consciousness, the World, and the Dialectic of Rational Dynamicity -- 1.3.4. Matter, Life, and Consciousness -- Chapter 2 -- Foundations of Mathematical Analysis and Analytic Geometry -- 2.1. Sets, Relations, and Groups -- 2.1.2. Basic Operations on Sets -- Applications of Set Theory to Probability Theory -- 2.1.3. Relations -- 2.1.4. Groups -- 2.2. Number Systems, Algebra, and Geometry -- 2.2.1. Axiomatic Number Theory -- The System of Natural Numbers -- Principle of Mathematical Induction -- Recursion -- Properties of the System of Natural Numbers -- Enumeration -- Order in N and Ordinal Numbers -- Division -- 2.2.2. The Set of Integral Numbers -- 2.2.3. The Set of Rational Numbers -- 2.2.4. The Set of Real Numbers -- Dedekind Algebra -- R as a Field -- The Absolute Value of a Real Number -- Exponentiation and Logarithm -- Properties of the System of the Real Numbers.




The Logical Universe


Book Description

The central concept of the system of philosophy developed in this text is that of meaning. This is applied to logic as a theory of meaning, rather than the proof theory of formal logic. Time is assymetric - an arrow. This concept is applied to the laws of nature which have no arrow of time. In the philosophy of mathematics the same emphasis is on meaning using the ideas of Sir William Rowan Hamilton on the ordinal character of numbers, the real numbers, the scalar numbers and the extension to vectors. The problem of God's existence is one of meaning - not proof. This is directly related to the concept of the universe having a beginning or being eternal. The logical universe - the cosmos - is conceived as one reality existing in space and time which is assymetric and corresponds to the real universe.