The Physics of Rubber Elasticity


Book Description

This book provides a critical review of the equilibrium elastic properties of rubber, together with the kinetic-theory background. It is suitable for the non-specialist and the emphasis is on the physical reality embodied in the mathematical formulations. Polymer science had developed greatly since the second edition of this text in 1958, and the two main advances - the refinements of the network theory and associated thermodynamic analysis, and the development of thephenomenological or non-molecular approach to the subject - are both reflected in the structure of this third edition.




Mechanics and Thermomechanics of Rubberlike Solids


Book Description

This work gives for the first time an interdisciplinary and deep approach to the mathematical modelling of rubber-like materials considering both the molecular and phenomenological point of views. It contains an introduction to the suitable numerical techniques and an overview of experimental techniques and data with a short survey on some industrial applications. Elastic and inelastic effects are discussed in details. The book is suitable for applied mathematicians, mechanical engineers, civil engineers, material scientists and polymer scientists.




The Physics of Deformation and Fracture of Polymers


Book Description

A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.







Science and Technology of Rubber


Book Description

The Science and Technology of Rubber, Third Edition provides a broad survey of elastomers with special emphasis on materials with a rubber-like elasticity. As in the 2nd edition, the emphasis remains on a unified treatment of the material; exploring topics from the chemical aspects such as elastomer synthesis and curing, through recent theoretical developments and characterization of equilibrium and dynamic properties, to the final applications of rubber, including tire engineering and manufacturing. Many advances have been made in polymer and elastomers research over the past ten years since the 2nd edition was published. Updated material stresses the continuous relationship between the ongoing research in synthesis, physics, structure and mechanics of rubber technology and industrial applications. Special attention is paid to recent advances in rubber-like elasticity theory and new processing techniques for elastomers. This new edition is comprised of 20% new material, including a new chapter on environmental issues and tire recycling.







Advances in Elastomers and Rubber Elasticity


Book Description

The present book is a sequel to "Elastomers and Rubber Elasticity," edited by J.E. Mark and J. Lal and published by the American Chemical Society in 1982. It is also based on papers presented at an ACS Symposium, sponsored by the Division of Polymer Chemistry, Inc., in this case one held in Chicago in September of 1985. The keynote speaker was to have been Pro fessor Paul J. Flory, and his untimely death just prior to the symposium was a tremendous loss to all of polymer science, in particular to those in terested in elastomeric materials. It is to his memory that this book is dedicated. There has been a great deal of progress in preparing and studying elas tomers since the preceding symposium, which was in 1981. In the case of the synthesis and curing of elastomers, much of the background necessary to an appreciation of these advances is given in the first, introductory chapter.




Advances in Elastomers and Rubber Elasticity


Book Description

The present book is a sequel to "Elastomers and Rubber Elasticity," edited by J.E. Mark and J. Lal and published by the American Chemical Society in 1982. It is also based on papers presented at an ACS Symposium, sponsored by the Division of Polymer Chemistry, Inc., in this case one held in Chicago in September of 1985. The keynote speaker was to have been Pro fessor Paul J. Flory, and his untimely death just prior to the symposium was a tremendous loss to all of polymer science, in particular to those in terested in elastomeric materials. It is to his memory that this book is dedicated. There has been a great deal of progress in preparing and studying elas tomers since the preceding symposium, which was in 1981. In the case of the synthesis and curing of elastomers, much of the background necessary to an appreciation of these advances is given in the first, introductory chapter.




Structures and Properties of Rubberlike Networks


Book Description

Rubber elasticity is an important sub-field of polymer science. This book is in many ways a sequel to the authors' previous, more introductory book, Rubberlike Elasticity: A Molecular Primer (Wiley-Interscience, 1988), and will in some respects replace the now classic book by L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford, 1975). The present book has much in common with its predecessor, in particular its strong emphasis on molecular concepts and theories. Similarly, only equilibrium properties are covered in any detail. Though this book treats much of the same subject matter, it is a more comprehensive, more up-to-date, and somewhat more sophisticated treatment.




Rubber and Rubber Balloons


Book Description

Experiments with rubber balloons and rubber sheets have led to surprising observations, some of them hitherto unknown or not previously described in the literature. In balloons, these phenomena are due to the non-monotonic pressure-radius characteristic which makes balloons a subject of interest to physicists engaged in stability studies. Here is a situation in which symmetry breaking and hysteresis may be studied analytically, because the stress-stretch relations of rubber - and its non-convex free energy - can be determined explicitly from the kinetic theory of rubber and from non-linear elasticity. Since rubber elasticity and the elasticity of gases are both entropy-induced, a rubber balloon represents a compromise between the entropic tendency of a gas to expand and the entropic tendency of rubber to contract. Thus rubber and rubber balloons furnish instructive paradigms of thermodynamics. This monograph treats the subject at a level appropriate for post-graduate studies.