Physiology of Crop Production


Book Description

This single volume explores the theoretical and the practical aspects of crop physiological processes around the world The marked decrease over the past century in the land available for crop production has brought about mounting pressure to increase crop yields, especially in developing nations. Physiology of Crop Production provides cutting-edge research and data for complete coverage of the physiology of crop production, all in one source, right at your fingertips. This valuable reference gives the extensive in-depth information soil and crop professionals need to maximize crop productivity anywhere the world. Leading soil and plant scientists and researchers clearly explain theory, practical applications, and the latest advances in the field. Crop physiology is a vital science needed to understand crop growth and development to facilitate increases of plant yield. Physiology of Crop Production presents a wide range of information and references from varying regions of the world to make the book as complete and broadly focused as possible. Discussion in each chapter is supported by experimental data to make this book a superb resource that will be used again and again. Chapter topics include plant and root architecture, growth and yield components, photosynthesis, source-sink relationship, water use efficiency, crop yield relative to water stress, and active and passive ion transport. Several figures and tables accompany the extensive referencing to provide a detailed, in-depth look at every facet of crop production. Physiology of Crop Production explores management strategies for: ideal plant architecture maximizing root systems ideal yield components maximizing photosynthesis maximizing source-sink relationship sequestration of carbon dioxide reducing the effects of drought improving N, P, K, Ca, Mg, and S nutrition improving micronutrient uptake Physiology of Crop Production is an essential desktop resource for plant physiologists, soil and crop scientists, breeders, agronomists, agronomy administrators in agro-industry, educators, and upper-level undergraduate and graduate students.




Crop Yield


Book Description

This book has been prepared for those seeking a better understanding of the functioning of crop plants, particularly the processes that lead to the genera tion of products valued by human beings. The contributors, who are among the world's foremost experts on the important crops upon which humanity depends for food or fibre, address the relevant processes for their specific crop. Currently, the world population is continuing to increase. It is projected to plateau around the middle of the next century, and while there is considerable controversy regarding the population level when this plateau is achieved, most estimates are in the area of 10 000 000 000. At present, there are about 800000000 people in the world who do not have secure access to food. Over the last 50 years various aspects of agricultural research have been combined to increase the output of world crops approximately 2.5-fold. Given the need to feed the increasing population, and to provide better access, it is predicted that during the next 50 years the agricultural research community must repeat this achievement.




The Physiology of Crop Yield


Book Description

First published in 1989, Physiology of Crop Yield was the first student textbook to digest and assimilate the many advances in crop physiology, within a framework of resource capture and use. Retaining the central core of the first edition, this long-awaited second edition draws on recent developments in areas such as phenology, canopy dynamics and crop modelling, and the concepts of sustainable crop production. A broad perspective is developed, from the gene through the plant and crop to the ecosystem, covering: Advances in molecular biology relating to crop science Limitation of crop yield by the supply of water or nitrogen Global climate change and its impact on crop modelling Physiological aspects of crop quality A wider range of species, with emphasis on wheat, maize and soybean This book will be a valuable tool for advanced undergraduate and postgraduate students of agricultural science, plant science, applied ecology and environmental science. It will be an essential addition to all libraries in universities and relevant research establishments.




Crop Physiology Case Histories for Major Crops


Book Description

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. - A crop-based approach to crop physiology in a G x E x M context - Captures the perspectives of global experts on 22 crops




Seed Biology and Yield of Grain Crops, 2nd Edition


Book Description

This new edition of an established title examines the determination of grain crop yield from a unique perspective, by concentrating on the influence of the seed itself. As the food supply for an expanding world population is based on grain crops harvested for their seeds, understanding the process of seed growth and its regulation is crucial to our efforts to increase production and meet the needs of that population. Yield of grain crops is determined by their assimilatory processes such as photosynthesis and the biosynthetic processes in the seed, which are partly regulated within the seed itself. Substantially updated with new research and further developments of the practical applications of the concepts explored, this book is essential reading for those concerned with seed science and crop yield, including agronomists, crop physiologists, plant breeders, and extension workers. It is also a valuable source of information for lecturers and graduate students of agronomy and plant physiology.




Modeling Physiology of Crop Development, Growth and Yield


Book Description

Model studies focus experimental investigations to improve our understanding and performance of systems. Concentrating on crop modelling, this book provides an introduction to the concepts of crop development, growth, and yield, with step-by-step outlines to each topic, suggested exercises and simple equations. A valuable text for students and researchers of crop development alike, this book is written in five parts that allow the reader to develop a solid foundation and coverage of production models including water- and nitrogen-limited systems.




Applied Crop Physiology


Book Description

This book presents a simple, straightforward discussion of the principles and processes involved in the production of grain yield by agronomic crops, and how these processes underlie and influence management decisions. The focus is on grain crops, principally maize and soybean, although the general principles apply equally well to cereals, grain legumes and oil crops. Intended for researchers in crop science, agronomy and plant science, and crop production practitioners, this book will enable readers to make better, more informed management decisions; decisions that will help maintain a well-fed world in the future.




Crop Physiology


Book Description

From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability. - Provides a view of crop physiology as an active source of methods, theories, ideas, and tools for application in genetic improvement and agronomy - Written by leading scientists from around the world - Combines environment-specific cropping systems and general principles of crop science to appeal to advanced students, and scientists in agriculture-related disciplines, from molecular sciences to natural resources management




Physiology and Biotechnology Integration for Plant Breeding


Book Description

Global demand for wheat, rice, corn, and other essential grains is expected to steadily rise over the next twenty years. Meeting this demand by increasing production through increased land use is not very likely; and while better crop management may make a marginal difference, most agriculture experts agree that this anticipated deficit must be made up through increased crop yields. The first resource of its kind, Physiology and Biotechnology Integration for Plant Breeding assembles current research in crop plant physiology, plant biotechnology, and plant breeding that is aimed toward improving crop plants genetically while supporting a productive agriculture ecosystem. Highly comprehensive, this reference provides access to the most innovative perspectives in crop physiology – with a special emphasis on molecular approaches – aimed at the formulation of those crop cultivars that offer the greatest potential to increase crop yields in stress environments. Surveys the current state of the field, as well as modern options and avenues for plant breeders and biotechnologists interested in augmenting crop yield and stability With the contributions of plant scientists from all corners of the globe who are actively involved in meeting this important challenge, Physiology and Biotechnology Integration for Plant Breeding provides readers with the background information needed to understand this cutting-edge work, as well as detailed information on present and potential applications. While the first half of the book establishes and fully explains the link between crop physiology and molecular biology, the second part explores the application of biotechnology in the effective delivery of the high yield and environmentally stable crop plants needed to avert the very real possibility of worldwide hunger.




Handbook of Plant and Crop Physiology


Book Description

With contributions from over 70 international experts, this reference provides comprehensive coverage of plant physiological stages and processes under both normal and stressful conditions. It emphasizes environmental factors, climatic changes, developmental stages, and growth regulators as well as linking plant and crop physiology to the production of food, feed, and medicinal compounds. Offering over 300 useful tables, equations, drawings, photographs, and micrographs, the book covers cellular and molecular aspects of plant and crop physiology, plant and crop physiological responses to heavy metal concentration and agrichemicals, computer modeling in plant physiology, and more.