The Plasma Dispersion Function


Book Description

The Plasma Dispersion Function: The Hilbert Transform of the Gaussian focuses on the reactions, transformations, and calculations involved in plasma dispersion function. The book first offers information on the properties of Z, including symmetry properties, values for special arguments, power series, asymptotic expansion, and differential equation characterization. The text then ponders on the applications to plasma physics. Numerical calculations on the function of Z are presented. The manuscript takes a look at table generation and accuracy wherein various methods are proposed in computing the error function in the multiple regions of the complex plane. The text also elaborates on the general behavior of the functions. The book is a dependable reference for readers interested in the plasma dispersion function.







Waves in Plasmas


Book Description

"Blurb & Contents" "The reader is treated to constantly refreshing and engaging commentary and opinion that always informs....As she depicts them, the problems of the universe are always fascinating and, most of all, they are alive and compelling." David DeVorkin, Sky & Telescope Virginia Trimble offers readers a fascinating and accessible tour of the stars. An astronomer with shared appointments in California and Maryland, the author ranges over a large portion of the universe as she discusses the search for life on other planets, how galaxies form, why stars explode and die, and the nature of the elusive dark matter in the universe. She also explains the astronomical significance of Cheeps' pyramid and leads the reader through scientific speculation about what and when the Star of Bethlehem might have been. Throughout, Trimble points to the exciting unanswered questions that still perplex the field and considers the formidable tasks to be faced by the next generation of young astronomers.




Plasma Scattering of Electromagnetic Radiation


Book Description

This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory




Introduction to Plasma Physics and Controlled Fusion


Book Description

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.




Theory of Space Plasma Microinstabilities


Book Description

This book describes the linear theory of waves and instabilities that propagate in a collisionless plasma.




Kinetic Theory of Plasma Waves


Book Description

The book deals with the propagation and absorption of high frequency waves in plasmas. The text collects in a structured and self-contained way the basic knowledge on the broad and varied behavior of plasma waves, adopting the microscopic kinetic description of the plasma as unifying principle. The internal coherence of the theory is explicitly stressed, and interesting physical phenomena peculiar to plasmas are discussed in detail, including collisionless damping of waves, the development of stochasticity in the interactions of charged particles with electromagnetic waves, and nonlinear interactions between waves. The most common and useful approximations used in solving practical problems are derived as special cases from the more general kinetic approach, thereby clarifying their meaning and domain of applicability. This exposition should be useful to plasma physicists both as an introduction and a reference to this field of research.




Basic Space Plasma Physics (Third Edition)


Book Description

This textbook describes Earth's plasma environment from single particle motion in electromagnetic fields, with applications to Earth's magnetosphere, up to plasma wave generation and wave-particle interaction. The origin and effects of collisions and conductivities are discussed in detail, as is the formation of the ionosphere, the origin of magnetospheric convection and magnetospheric dynamics in solar wind-magnetosphere coupling, the evolution of magnetospheric storms, auroral substorms, and auroral phenomena of various kinds.The second half of the book presents the theoretical foundation of space plasma physics, from kinetic theory of plasma through the formation of moment equations and derivation of magnetohydrodynamic theory of plasmas. The validity of this theory is elucidated, and two-fluid theory is presented in more detail. This is followed by a brief analysis of fluid boundaries, with Earth's magnetopause and bow shock as examples. The main emphasis is on the presentation of fluid and kinetic wave theory, deriving the relevant wave modes in a high temperature space plasma. Plasma instability is the most important topic in all applications and is discussed separately, including a section on thermal fluctuations. These theories are applied to the most interesting problems in space plasma physics, collisionless reconnection and collisionless shock waves with references provided. The Appendix includes the most recent developments in the theory of statistical particle distributions in space plasma, the Kappa distribution, etc, also including a section on space plasma turbulence and emphasizing on new observational developments with a dimensional derivation of the Kolmogorov spectrum, which might be instructive for the student who may worry about its origin.The book ends with a section on space climatology, space meteorology and space weather, a new application field in space plasma physics that is of vital interest when considering the possible hazards to civilization from space.




Introduction to Plasma Physics


Book Description

Introduction to Plasma Physics presents the latest on plasma physics. Although plasmas are not very present in our immediate environment, there are still universal phenomena that we encounter, i.e., electric shocks and galactic jets. This book presents, in parallel, the basics of plasma theory and a number of applications to laboratory plasmas or natural plasmas. It provides a fresh look at concepts already addressed in other disciplines, such as pressure and temperature. In addition, the information provided helps us understand the links between fluid theories, such as MHD and the kinetic theory of these media, especially in wave propagation. - Presents the different phenomena that make up plasma physics - Explains the basics of plasma theory - Helps readers comprehend the various concepts related to plasmas




Plasma Waves


Book Description

Extended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.