The Pleasures of Probability


Book Description

The ideas of probability are all around us. Lotteries, casino gambling, the al most non-stop polling which seems to mold public policy more and more these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairly decent mathematical background in elementary algebra to this world of probabil ity, to the way of thinking typical of probability, and the kinds of problems to which probability can be applied. I have used examples from a wide variety of fields to motivate the discussion of concepts.




The Pleasures of Statistics


Book Description

From his unique perspective, renowned statistician and educator Frederick Mosteller describes many of the projects and events in his long career. From humble beginnings in western Pennsylvania to becoming the founding chairman of Harvard University’s Department of Statistics and beyond, he inspired many statisticians, scientists, and students with his unabashed pragmatism, creative thinking, and zest for both learning and teaching. This candid account offers fresh insights into the qualities that made Mosteller a superb teacher, a prolific scholar, a respected leader, and a valued advisor. A special feature of the book is its chapter-length insider accounts of work on the pre-election polls of 1948, statistical aspects of the Kinsey report on sexual behavior in the human male, mathematical learning theory, authorship of the disputed Federalist papers, safety of anesthetics, and a wide-ranging examination of the Coleman report on equality of educational opportunity. This volume is a companion to Selected Papers of Frederick Mosteller (Springer, 2006) and A Statistical Model: Frederick Mosteller’s Contributions to Statistics, Science, and Public Policy (Springer-Verlag, 1990). Frederick Mosteller (1916–2006) was Roger I. Lee Professor of Mathematical Statistics at Harvard University. His manuscript was unfinished at his death and has been updated.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.




The Pleasures of Counting


Book Description

What is the connection between the outbreak of cholera in Victorian Soho, the Battle of the Atlantic, African Eve and the design of anchors? One answer is that they are all examples chosen by Dr Tom Körner to show how a little mathematics can shed light on the world around us, and deepen our understanding of it. Dr Körner, an experienced author, describes a variety of topics which continue to interest professional mathematicians, like him. He does this using relatively simple terms and ideas, yet confronting difficulties (which are often the starting point for new discoveries) and avoiding condescension. If you have ever wondered what it is that mathematicians do, and how they go about it, then read on. If you are a mathematician wanting to explain to others how you spend your working days (and nights), then seek inspiration here.




The Art of the Infinite


Book Description

Traces the development of mathematical thinking and describes the characteristics of the "republic of numbers" in terms of humankind's fascination with, and growing knowledge of, infinity.




The Joy of X


Book Description

A delightful tour of the greatest ideas of math, showing how math intersects with philosophy, science, art, business, current events, and everyday life, by an acclaimed science communicator and regular contributor to the "New York Times."




Fifty Challenging Problems in Probability with Solutions


Book Description

Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.




Mathematical Statistics with Resampling and R


Book Description

This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.




The Pleasures of Counting


Book Description

What is the connection between the outbreak of cholera in Victorian Soho, the Battle of the Atlantic, African Eve and the design of anchors? One answer is that they are all examples chosen by Dr Tom Körner to show how a little mathematics can shed light on the world around us, and deepen our understanding of it. Dr Körner, an experienced author, describes a variety of topics which continue to interest professional mathematicians, like him. He does this using relatively simple terms and ideas, yet confronting difficulties (which are often the starting point for new discoveries) and avoiding condescension. If you have ever wondered what it is that mathematicians do, and how they go about it, then read on. If you are a mathematician wanting to explain to others how you spend your working days (and nights), then seek inspiration here.




Discrete Probability


Book Description

Intended as a first course in probability at post-calculus level, this book is of special interest to students majoring in computer science as well as in mathematics. Since calculus is used only occasionally in the text, students who have forgotten their calculus can nevertheless easily understand the book, and its slow, gentle style and clear exposition will also appeal. Basic concepts such as counting, independence, conditional probability, random variables, approximation of probabilities, generating functions, random walks and Markov chains are all clearly explained and backed by many worked exercises. The 1,196 numerical answers to the 405 exercises, many with multiple parts, are included at the end of the book, and throughout, there are various historical comments on the study of probability. These include biographical information on such famous contributors as Fermat, Pascal, the Bernoullis, DeMoivre, Bayes, Laplace, Poisson, and Markov. Of interest to a wide range of readers and useful in many undergraduate programs.