The Prehistory of Mathematical Structuralism


Book Description

This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.







Mathematical Structuralism


Book Description

The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.




One Hundred Years of Russell's Paradox


Book Description

The papers collected in this volume represent the main body of research arising from the International Munich Centenary Conference in 2001, which commemorated the discovery of the famous Russell Paradox a hundred years ago. The 31 contributions and the introductory essay by the editor were (with two exceptions) all originally written for the volume. The volume serves a twofold purpose, historical and systematic. One focus is on Bertrand Russell's logic and logical philosophy, taking into account the rich sources of the Russell Archives, many of which have become available only recently. The second equally important aim is to present original research in the broad range of foundational studies that draws on both current conceptions and recent technical advances in the above-mentioned fields. The volume contributes therefore, to the well-established body of mathematical philosophy initiated to a large extent by Russell's work.







The Richness of the History of Mathematics


Book Description

This book, a tribute to historian of mathematics Jeremy Gray, offers an overview of the history of mathematics and its inseparable connection to philosophy and other disciplines. Many different approaches to the study of the history of mathematics have been developed. Understanding this diversity is central to learning about these fields, but very few books deal with their richness and concrete suggestions for the “what, why and how” of these domains of inquiry. The editors and authors approach the basic question of what the history of mathematics is by means of concrete examples. For the “how” question, basic methodological issues are addressed, from the different perspectives of mathematicians and historians. Containing essays by leading scholars, this book provides a multitude of perspectives on mathematics, its role in culture and development, and connections with other sciences, making it an important resource for students and academics in the history and philosophy of mathematics.




Logic, Epistemology, and Scientific Theories - From Peano to the Vienna Circle


Book Description

This book provides a collection of chapters on the development of scientific philosophy and symbolic logic in the early twentieth century. The turn of the last century was a key transitional period for the development of symbolic logic and scientific philosophy. The Peano school, the editorial board of the Revue de Métaphysique et de Morale, and the members of the Vienna Circle are generally mentioned as champions of this transformation of the role of logic in mathematics and in the sciences. The scholarship contained provides a rich historical and philosophical understanding of these groups and research areas. Specifically, the contributions focus on a detailed investigation of the relation between structuralism and modern mathematics. In addition, this book provides a closer understanding of the relation between symbolic logic and previous traditions such as syllogistics. This volume also informs the reader on the relation between logic, the history and didactics in the Peano School. This edition appeals to students and researchers working in the history of philosophy and of logic, philosophy of science, as well as to researchers on the Vienna Circle and the Peano School.




Morality and Mathematics


Book Description

To what extent are the subjects of our thoughts and talk real? This is the question of realism. In this book, Justin Clarke-Doane explores arguments for and against moral realism and mathematical realism, how they interact, and what they can tell us about areas of philosophical interest more generally. He argues that, contrary to widespread belief, our mathematical beliefs have no better claim to being self-evident or provable than our moral beliefs. Nor do our mathematical beliefs have better claim to being empirically justified than our moral beliefs. It is also incorrect that reflection on the genealogy of our moral beliefs establishes a lack of parity between the cases. In general, if one is a moral antirealist on the basis of epistemological considerations, then one ought to be a mathematical antirealist as well. And, yet, Clarke-Doane shows that moral realism and mathematical realism do not stand or fall together — and for a surprising reason. Moral questions, insofar as they are practical, are objective in a sense that mathematical questions are not, and the sense in which they are objective can only be explained by assuming practical anti-realism. One upshot of the discussion is that the concepts of realism and objectivity, which are widely identified, are actually in tension. Another is that the objective questions in the neighborhood of factual areas like logic, modality, grounding, and nature are practical questions too. Practical philosophy should, therefore, take center stage.




Women in the History of Analytic Philosophy


Book Description

This book contains a selection of papers from the workshop Women in the History of Analytic Philosophy held in October 2019 in Tilburg, the Netherlands. It is the first volume devoted to the role of women in early analytic philosophy. It discusses the ideas of ten female philosophers and covers a period of over a hundred years, beginning with the contribution to the Significs Movement by Victoria, Lady Welby in the second half of the nineteenth century, and ending with Ruth Barcan Marcus’s celebrated version of quantified modal logic after the Second World War. The book makes clear that women contributed substantially to the development of analytic philosophy in all areas of philosophy, from logic, epistemology, and philosophy of science, to ethics, metaphysics, and philosophy of language. It illustrates that although women's voices were no different from men's as regards their scope and versatility, they had a much harder time being heard. The book is aimed at historians of philosophy and scholars in gender studies




An Aristotelian Realist Philosophy of Mathematics


Book Description

Mathematics is as much a science of the real world as biology is. It is the science of the world's quantitative aspects (such as ratio) and structural or patterned aspects (such as symmetry). The book develops a complete philosophy of mathematics that contrasts with the usual Platonist and nominalist options.