The Prime Numbers and Their Distribution


Book Description

One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.




The Distribution of Prime Numbers


Book Description

Prime numbers have fascinated mathematicians since the time of Euclid. This book presents some of our best tools to capture the properties of these fundamental objects, beginning with the most basic notions of asymptotic estimates and arriving at the forefront of mathematical research. Detailed proofs of the recent spectacular advances on small and large gaps between primes are made accessible for the first time in textbook form. Some other highlights include an introduction to probabilistic methods, a detailed study of sieves, and elements of the theory of pretentious multiplicative functions leading to a proof of Linnik's theorem. Throughout, the emphasis has been placed on explaining the main ideas rather than the most general results available. As a result, several methods are presented in terms of concrete examples that simplify technical details, and theorems are stated in a form that facilitates the understanding of their proof at the cost of sacrificing some generality. Each chapter concludes with numerous exercises of various levels of difficulty aimed to exemplify the material, as well as to expose the readers to more advanced topics and point them to further reading sources.




The Distribution of Prime Numbers


Book Description

Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.




An Introduction to the Theory of Numbers


Book Description

"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description




The Prime Number Conspiracy


Book Description

The Pulitzer Prize–winning magazine’s stories of mathematical explorations show that inspiration strikes haphazardly, revealing surprising solutions and exciting discoveries—with a foreword by James Gleick These stories from Quanta Magazine map the routes of mathematical exploration, showing readers how cutting-edge research is done, while illuminating the productive tension between conjecture and proof, theory and intuition. The stories show that, as James Gleick puts it in the foreword, “inspiration strikes willy-nilly.” One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a “bathroom sink epiphany” and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on “breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge.” Winner of the 2022 Pulitzer Prize for Explanatory Reporting, Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the “conspiracy” of the title); consider whether math is the universal language of nature (allowing for “a unified theory of randomness”); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question “Is mathematics good for you?” Contributors Ariel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie Wolchover Copublished with Quanta Magazine




Number Theory


Book Description

This book provides an introduction and overview of number theory based on the distribution and properties of primes. This unique approach provides both a firm background in the standard material as well as an overview of the whole discipline. All the essential topics are covered: fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. Analytic number theory and algebraic number theory both receive a solid introductory treatment. The book’s user-friendly style, historical context, and wide range of exercises make it ideal for self study and classroom use.




The Book of Prime Number Records


Book Description

This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.




Prime Numbers


Book Description

A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more




The Prime Number Theorem


Book Description

At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.




The Development of Prime Number Theory


Book Description

1. People were already interested in prime numbers in ancient times, and the first result concerning the distribution of primes appears in Euclid's Elemen ta, where we find a proof of their infinitude, now regarded as canonical. One feels that Euclid's argument has its place in The Book, often quoted by the late Paul ErdOs, where the ultimate forms of mathematical arguments are preserved. Proofs of most other results on prime number distribution seem to be still far away from their optimal form and the aim of this book is to present the development of methods with which such problems were attacked in the course of time. This is not a historical book since we refrain from giving biographical details of the people who have played a role in this development and we do not discuss the questions concerning why each particular person became in terested in primes, because, usually, exact answers to them are impossible to obtain. Our idea is to present the development of the theory of the distribu tion of prime numbers in the period starting in antiquity and concluding at the end of the first decade of the 20th century. We shall also present some later developments, mostly in short comments, although the reader will find certain exceptions to that rule. The period of the last 80 years was full of new ideas (we mention only the applications of trigonometrical sums or the advent of various sieve methods) and certainly demands a separate book.