The Principles of Insect Physiology


Book Description

INSECTS PROVIDE an ideal medium in which to study all the problems of physiology. But if this medium is to be used to the best advantage, the principles and peculiarities of the insect's organization must be first appreciated. It is the purpose of this book to set forth these principles so far as they are understood at the present day. There exist already many excellent text-books of general ento mology; notably those of Imms, Weber, and Snodgrass, to mention only the more recent. But these authors have necessarily been preoccupied chiefly with describing the diversity of form among insects; discussions on function being correspondingly condensed. In the present work the emphasis is reversed. Struc ture is described only to an extent sufficient to make the physiological argument intelligible. Every anatomical peculiarity, every ecological specialization, has indeed its physiological counterpart. In that sense, anatomy, physiology and ecology are not separable. But regarded from the standpoint from which the present work is written, the endless modifications that are met with among insects are but illustrations of the general principles of their physiology, which it is the aim of this book to set forth. Completeness in such a work is not possible, or desirable; but an endeavour has been made to illustrate each physiological characteristic by a few concrete examples, and to include sufficient references to guide the student to the more important sources. The physiology of insects is to some the handmaid of Economic Entomology.




Principles of Insect Morphology


Book Description

This classic text, first published in 1935, is once again available. Still the standard reference in the English language, Principles of Insect Morphology is considered the author's masterpiece. A talented artist as well as one of the leading entomologists of his day, Robert E. Snodgrass produced a wealth of publications that display an accuracy and precision still unsurpassed. The 19 chapters in this volume cover each group of insect organs and their associated structures, at the same time providing a coherent morphological view of their fundamental nature and apparent evolution. To accomplish this aim, Snodgrass compares insect organs with those of other arthropods. Each chapter concludes with a glossary of terms. The 319 multipart illustrations are an invaluable source of information and have never been duplicated. This edition includes a new foreword by George Eickwort, Professor of Entomology at Cornell University, which relates the book to today's courses in insect morphology. Republication of this textbook will provide another generation of students with an essential foundation for their studies in entomology.




Insect Pathology


Book Description

Insect Pathology is designed for a broad spectrum of readers. Is should be useful to students, lecturers, and researchers requiring information about the principles in insect pathology and the biology of pathogens. It should serve as a resource for specialists to learn about other insect pathogen systems, for generalists to become aware of advances in insect pathology, and for scientists and students, beginning or otherwise, interested in learning about insect pathology. This book was originally intended to update the 1949 test by E. A. Steinhaus entitled Principles of Insect Pathology. The purpose for this book was twofold: To serve (1) as a text for an insect pathology and/or biological control class and (2) as a comprehensive reference source. Because this book summarizes much of the available information, its usefulness as a textbook for an insect pathology class is apparent. Although the literature citations are extensive, they are far from complete. The literature in insect pathology is voluminous and for the past decade has been expanding at an almost exponential rate. A complete review of the literature is beyond the scope of the book, and an omission of a reference does not preclude its importance. Our citations, however, should serve as a good starting point for those who wish to obtain further information. We have attempted to cover equally all subdisciplines, but shortcomings are unavoidable. For these, we take full responsibility.




Insect Molecular Genetics


Book Description

Insect Molecular Genetics, Third Edition, summarizes and synthesizes two rather disparate disciplines—entomology and molecular genetics. This volume provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools. The world of insect molecular genetics, once dominated by Drosophila, has become much more diverse, especially with the sequencing of multiple arthropod genomes (from spider mites to mosquitoes). This introduction includes discussion of honey bees, mosquitoes, flour beetles, silk moths, fruit flies, aphids, house flies, kissing bugs, cicadas, butterflies, tsetse flies and armyworms. This book serves as both a foundational text and a review of a rapidly growing literature. With fully revised and updated chapters, the third edition will be a valuable addition to the personal libraries of entomologists, geneticists, and molecular biologists. - Up-to-date references to important review articles, websites, and seminal citations in the disciplines - Well crafted and instructive illustrations integral to explaining the techniques of molecular genetics - Glossary of terms to help beginners learn the vocabulary of molecular biology




Insect Molecular Genetics


Book Description

Developed as an introduction to new molecular genetic techniques, Insect Molecular Genetics also provides literature, terminology, and additional sources of information to students, researchers, and professional entomologists. Although most molecular genetics studies have employed Drosophila, this book applies the same techniques to other insects, including pest insects of economic importance. As a text, as a reference, as a primer, and as a review of a vast and growing literature, Insect Molecular Genetics is a valuable addition to the libraries of entomologists, geneticists, and molecular biologists. - Features offered by this unique reference source: Detailed illustrations - Suggested readings at the end of each chapter - Glossary of molecular genetic terms




Sterile Insect Technique


Book Description

The sterile insect technique (SIT) is an environment-friendly method of pest control that integrates well into area-wide integrated pest management (AW-IPM) programmes. This book takes a generic, thematic, comprehensive, and global approach in describing the principles and practice of the SIT. The strengths and weaknesses, and successes and failures, of the SIT are evaluated openly and fairly from a scientific perspective. The SIT is applicable to some major pests of plant-, animal-, and human-health importance, and criteria are provided to guide in the selection of pests appropriate for the SIT. In the second edition, all aspects of the SIT have been updated and the content considerably expanded. A great variety of subjects is covered, from the history of the SIT to improved prospects for its future application. The major chapters discuss the principles and technical components of applying sterile insects. The four main strategic options in using the SIT — suppression, containment, prevention, and eradication — with examples of each option are described in detail. Other chapters deal with supportive technologies, economic, environmental, and management considerations, and the socio-economic impact of AW-IPM programmes that integrate the SIT. In addition, this second edition includes six new chapters covering the latest developments in the technology: managing pathogens in insect mass-rearing, using symbionts and modern molecular technologies in support of the SIT, applying post-factory nutritional, hormonal, and semiochemical treatments, applying the SIT to eradicate outbreaks of invasive pests, and using the SIT against mosquito vectors of disease. This book will be useful reading for students in animal-, human-, and plant-health courses. The in-depth reviews of all aspects of the SIT and its integration into AW-IPM programmes, complete with extensive lists of scientific references, will be of great value to researchers, teachers, animal-, human-, and plant-health practitioners, and policy makers.




Insect physiology


Book Description

years ago extensive advances have been made in all parts of the subject. Full-sized textbooks have been devoted to it; notably The Principles of Insect Physiology by the present author, the three volume Physiology of the Insecta edited by Morris Rockstein, and Insect Biochemistry by Darcy Gilmour; and articles describing the most recent advances in the physiology and biochemistry of insects appear in the Annual Review of Entomology, in Advances in Insect Physiology and elsewhere. References in this edition have therefore been confined to such textbooks and reviews, to a few recent papers which have not yet become incorporated in this way, and to a limited number of other papers which provide useful starting-points for further reading. I The Integument The key to much of the physiology of insects is to be found in the nature of their cuticle. As was first shown by Haecke1, the cuticle is the product of a single layer of epidermal cells. It is often described as being composed of non-living material; but in fact the epidermal cells give off fine filaments contained within the so-called 'pore canals', which run through the substance of the cuticle and often come within less than a micron of the surface. Cuticle Structure As described from stained sections the cuticle consists of two primary layers, the endocuticle which makes up the greater part, and a thin refractile epicuticle on the surface, usually not more than one micron in thickness.




Crop Physiology Case Histories for Major Crops


Book Description

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. - A crop-based approach to crop physiology in a G x E x M context - Captures the perspectives of global experts on 22 crops







Biology of Blood-Sucking Insects


Book Description

Blood-sucking insects are the vectors of many of the most debilitating parasites of man and his domesticated animals. In addition they are of considerable direct cost to the agricultural industry through losses in milk and meat yields, and through damage to hides and wool, etc. So, not surprisingly, many books of medical and veterinary entomology have been written. Most of these texts are organized taxonomically giving the details of the life-cycles, bionomics, relationship to disease and economic importance of each of the insect groups in turn. I have taken a different approach. This book is topic led and aims to discuss the biological themes which are common in the lives of blood-sucking insects. To do this I have concentrated on those aspects of the biology of these fascinating insects which have been clearly modified in some way to suit the blood-sucking habit. For example, I have discussed feeding and digestion in some detail because feeding on blood presents insects with special problems, but I have not discussed respiration because it is not affected in any particular way by haematophagy. Naturally there is a subjective element in the choice of topics for discussion and the weight given to each. I hope that I have not let my enthusiasm for particular subjects get the better of me on too many occasions and that the subject material achieves an overall balance.