PHYSICAL METALLURGY: PRINCIPLES AND PRACTICE, Third Edition


Book Description

This well-established book, now in its Third Edition, presents the principles and applications of engineering metals and alloys in a highly readable form. This new edition retains all the basic topics covered in earlier editions such as phase diagrams, phase transformations, heat treatment of steels and nonferrous alloys, shape memory alloys, solidification, fatigue, fracture and corrosion, as well as applications of engineering alloys. A new chapter on ‘Nanomaterials’ has been added (Chapter 8). The field of nano-materials is interdisciplinary in nature, covering many disciplines including physical metallurgy. Intended as a text for undergraduate courses in Metallurgical and Materials Engineering, the book is also suitable for students preparing for associate membership examination of the Indian Institute of Metals (AMIIM) and other professional examinations like AMIE.




Physical Metallurgy Principles


Book Description

* Covers all aspects of physical metallurgy and behavior of metals and alloys. * Presents the principles on which metallurgy is based. * Concepts such as heat affected zone and structure-property relationships are covered. * Principles of casting are clearly outlined in the chapter on solidification. * Advanced treatment on physical metallurgy provides specialized information on metals.




Modern Physical Metallurgy


Book Description

Modern Physical Metallurgy, Fourth Edition explains the fundamental principles of physical metallurgy and their application, allowing its readers to understand the many important technological phenomena of the field. The book covers topics such as the molecular properties of metals; the different physical methods of metals and alloys; and the structure of alloys. Also covered are topics such as the deformation of metals and alloys; phase transformations; and related processes such as creep, fatigue, fracture, oxidation, and corrosion. The text is recommended for metallurgists, chemists, and engineers who would like to know more about the principles behind metallurgy and its application in different fields.




Physical Metallurgy


Book Description

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It introduces the fundamental principles of physical metallurgy and the design methodologies for alloys and processing. The first part of the book discusses the structure and change of structure through phase transformations. The latter part of the books deals with plastic deformation, strengthening mechanisms, and mechanical properties as they relate to structure. The book also includes a chapter on physical metallurgy of steels and concludes by discussing the computational tools, involving computational thermodynamics and kinetics, to perform alloy and process design.




Physical Metallurgy


Book Description




Introduction to the Physical Metallurgy of Welding


Book Description

Introduction to the Physical Metallurgy of Welding deals primarily with the welding of steels, which reflects the larger volume of literature on this material; however, many of the principles discussed can also be applied to other alloys. The book is divided into four chapters, in which the middle two deal with the microstructure and properties of the welded joint, such as the weld metal and the heat-affected zone. The first chapter is designed to provide a wider introduction to the many process variables of fusion welding, particularly those that may influence microstructure and properties, while the final chapter is concerned with cracking and fracture in welds. A comprehensive case study of the Alexander Kielland North Sea accommodation platform disaster is also discussed at the end. The text is written for undergraduate or postgraduate courses in departments of metallurgy, materials science, or engineering materials. The book will also serve as a useful revision text for engineers concerned with welding problems in industry.




Mechanical Metallurgy


Book Description




Metallurgy for the Non-Metallurgist, Second Edition


Book Description

The completely revised Second Edition of Metallurgy for the Non-Metallurgist provides a solid understanding of the basic principles and current practices of metallurgy. This major new edition is for anyone who uses, makes, buys or tests metal products. For both beginners and others seeking a basic refresher, the new Second Edition of the popular Metallurgy for the Non-Metallurgist gives an all-new modern view on the basic principles and practices of metallurgy. This new edition is extensively updated with broader coverage of topics, new and improved illustrations, and more explanation of basic concepts. Why are cast irons so suitable for casting? Do some nonferrous alloys respond to heat treatment like steels? Why is corrosion so pernicious? These are questions that can be answered in this updated reference with many new illustrations, examples, and descriptions of basic metallurgy.




Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint)


Book Description

In the decade since the first edition of this popular text was published, the metallurgical field has undergone rapid developments in many sectors. Nonetheless, the underlying principles governing these developments remain the same. A textbook that presents these advances within the context of the fundamentals is greatly needed by instructors in the field Phase Transformations in Metals and Alloys, Second Edition maintains the simplicity that undergraduate instructors and students have come to appreciate while updating and expanding coverage of recently developed methods and materials. The book is effectively divided into two parts. The beginning chapters contain the background material necessary for understanding phase transformations - thermodynamics, kinetics, diffusion theory and the structure and properties of interfaces. The following chapters deal with specific transformations - solidification, diffusional transformation in solids and diffusionless transformation. Case studies of engineering alloys are incorporated to provide a link between theory and practice. New additions include an extended list of further reading at the end of each chapter and a section containing complete solutions to all exercises in the book Designed for final year undergraduate and postgraduate students of metallurgy, materials science, or engineering materials, this is an ideal textbook for both students and instructors.




Principles of Extractive Metallurgy


Book Description

The Book Attempts To Present A Comprehensive View Of Extractive Metallurgy, Especially Principles Of Extractive Metallurgy In A Concise Form. This Is The First Book In This Area Which Attempts To Do It. It Has Been Written In Textbook Style. It Presents The Various Concepts Step By Step, Shows Their Importance, Deals With Elementary Quantitative Formulations, And Illustrates Through Quantitative And Qualitative Informations. The Approach Is Such That Even Undergraduate Students Would Be Able To Follow The Topics Without Much Difficulty And Without Much Of A Background In Specialized Subjects. This Is Considered To Be A Very Useful Approach In This Area Of Technology. Moreover The Inter-Disciplinary Nature Of The Subject Has Been Duely Brought Out.While Teaching Concerned Course(S) In The Undergraduate And Postgraduate Level The Authors Felt The Need Of Such A Book. The Authors Found The Books Available On The Subject Did Not Fulfill The Requirements. No Other Book Was Concerned With All Relevant Concepts. Most Of Them Laid Emphasis Either On Thermodynamic Aspects Or On Discussing Unit Processes. Transport Phenomena Are Dealt With In Entirely Different Books. Reactor Concepts Were Again Lying In Chemical Engineering Texts. The Authors Tried To Harmonize And Synthesize The Concepts In Elementary Terms For Metallurgists.The Present Book Contains A Brief Descriptive Summary Of Some Important Metallurgical Unit Processes. Subsequently It Discusses Not Only Physical Chemistry Of Metallurgical Reactions And Processes But Also Rate Phenomena Including Heat And Mass Transfer, Fluid Flow, Mass And Energy Balance, And Elements Of Reactor Engineering. A Variety Of Scientific And Engineering Aspects Of Unit Processes Have Been Discussed With Stress On The Basic Principles All Throughout. There Is An Attempt To Introduce, As Much As Possible, Quantitative Treatments And Engineering Estimates. The Latter May Often Be Approximate From The Point Of View Of Theory But Yields Results That Are Very Valuable To Both Practicing Metallurgists As Well As Others.