The Propagation of Gamma Quanta in Matter


Book Description

The Propagation of Gamma Quanta in Matter deals with various problems of the propagation and absorption of gamma quanta in matter, including the occurrence of multiple scattering of radiation. A general account of theoretical methods of solving problems of multiple scattering of quanta is presented, with emphasis on the results of solving such problems. This book consists of three chapters and begins with a discussion on the interaction of gamma radiation with matter; multiple scattering of gamma quanta; and the distribution function and quantities connected with it. The next chapter focuses on the theory of multiple scattering of gamma quanta and covers subjects such as the transport equation and its analytical solution; method of moments; method of random sampling; and method of successive collisions. The last chapter examines the propagation of radiation for various geometrical configurations of the sources and absorbing media, paying particular attention to a point source in a homogeneous medium and on the boundary of two media; unidirectional radiation in a homogeneous medium; reflexion of gamma radiation from the surface of a scattering medium; a plane isotropic source; and a thick radiating layer of an absorbing medium. This monograph will appeal to students as well as physicists and engineers engaged in shield design problems.






















Interplay of Quantum and Statistical Fluctuations in Critical Quantum Matter


Book Description

This book explores critical phenomena in highly correlated quantum matter. Specifically, quantum antiferromagnets, magnon Bose condensates, and systems exhibiting deconfined quantum criticality are considered. The book’s main achievement is the incorporation of both quantum and statistical fluctuations into a quantum field theoretic treatment of critical phenomena. This yields significant new insights into an abundance of problems, positions them in a much more general context, and offers an unprecedented power to analyze experimental and numerical data and predict new effects. Further, a major result and overarching theme is the exploration of the scale-dependent coupling constant – an effect known in quantum chromodynamics as “asymptotic freedom.” The book provides the first analysis to reveal asymptotic freedom in the quantum magnetism context, and discusses many other manifestations. Another significant result concerns the development of a consistent theoretical framework that resolves a long-standing inconsistency in the theory of Bose condensation. Using the approach developed here, two new universality classes are subsequently identified. A final major result addresses the exotic scenario of deconfined quantum criticality. Within this framework, the book predicts the Bose condensation of particles with half-integer spin – the first- ever made in this regard. In closing, a smoking gun criterion to test for this exotic condensate is established.