The Quantum Theory of Atoms in Molecules


Book Description

This book distills the knowledge gained from research into atoms in molecules over the last 10 years into a unique, handy reference. Throughout, the authors address a wide audience, such that this volume may equally be used as a textbook without compromising its research-oriented character. Clearly structured, the text begins with advances in theory before moving on to theoretical studies of chemical bonding and reactivity. There follow separate sections on solid state and surfaces as well as experimental electron densities, before finishing with applications in biological sciences and drug-design. The result is a must-have for physicochemists, chemists, physicists, spectroscopists and materials scientists.




Atoms in Molecules


Book Description

The molecular structure hypothesis - that a molecule is a collection of atoms linked by a network of bonds - was forged in the crucible of nineteenth century experimental chemistry and has continued to serve as the principal means of ordering and classifying the observations of chemistry. There is a difficulty with the hypothesis, however, in that it is not related directly to the physics which governs the motions of the nuclei and electrons that make up the atoms and the bonds. It isthe purpose of this important book - now available in paperback for the first time - to show that a theory can be developed to underpin the molecular structure hypothesis - that the atoms in a molecule are real, with properties predicted and defined by the laws of quantum mechanics can be incorporated into the resulting theory - a theory of atoms in molecules. The book is aimed at those scientists responsible for performing the experiments and collecting the observations on the properties ofmatter at the atomic level, in the belief that the transformation of qualitative concepts into a qualitative theory will serve to deepen our understanding of chemistry.




Relativistic Quantum Theory of Atoms and Molecules


Book Description

This book is intended for physicists and chemists who need to understand the theory of atomic and molecular structure and processes, and who wish to apply the theory to practical problems. As far as practicable, the book provides a self-contained account of the theory of relativistic atomic and molecular structure, based on the accepted formalism of bound-state Quantum Electrodynamics. The author was elected a Fellow of the Royal Society of London in 1992.




Atoms and Molecules


Book Description

Atoms and Molecules describes the basic properties of atoms and molecules in terms of group theoretical methods in atomic and molecular physics. The book reviews mathematical concepts related to angular momentum properties, finite and continuous rotation groups, tensor operators, the Wigner-Eckart theorem, vector fields, and vector spherical harmonics. The text also explains quantum mechanics, including symmetry considerations, second quantization, density matrices, time-dependent, and time-independent approximation methods. The book explains atomic structure, particularly the Dirac equation in which its nonrelativistic approximation provides the basis for the derivation of the Hamiltonians for all important interactions, such as spin-orbit, external fields, hyperfine. Along with multielectron atoms, the text discusses multiplet theory, the Hartree-Fock formulation, as well as the electromagnetic radiation fields, their interactions with atoms in first and higher orders. The book explores molecules and complexes, including the Born-Oppenheimer approximation, molecular orbitals, the self-consistent field method, electronic states, vibrational and rotational states, molecular spectra, and the ligand field theory. The book can prove useful for graduate or advanced students and academicians in the field of general and applied physics.




Atoms in Molecules


Book Description

The molecular structure hypothesis--the proposition that a molecule is a collection of atoms linked by a network of bonds--provides the principal means of ordering and classifying observations in chemistry. It is not, however, directly related to the physics which govern the motions of atomic nuclei and electrons. This important book develops a theory establishing that molecular structure--with properties predicted and defined by the laws of quantum mechanics--can be explained in terms of underlying physics. As a result, the classification based upon the concept of atoms in molecules is freed from its empirical constraints and the full predictive power of quantum mechanics can be incorporated into the resulting theory--a theory of atoms in molecules. Eminently accessible and readable, this unique book will interest all physical scientists who use the concepts of atoms, bonds, and structure in the interpretation of their work.







Density-Functional Theory of Atoms and Molecules


Book Description

This book is a rigorous, unified account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. Containing a detailed discussion of the chemical potential and its derivatives, it provides an understanding of the concepts of electronegativity, hardness and softness, and chemical reactivity. Both the Hohenberg-Kohn-Sham and the Levy-Lieb derivations of the basic theorems are presented, and extensive references to the literature are included. Two introductory chapters and several appendices provide all the background material necessary beyond a knowledge of elementary quantum theory. The book is intended for physicists, chemists, and advanced students in chemistry.




Introduction to the Theory of Collisions of Electrons with Atoms and Molecules


Book Description

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.




Introductory Quantum Mechanics with MATLAB


Book Description

Presents a unique approach to grasping the concepts of quantum theory with a focus on atoms, clusters, and crystals Quantum theory of atoms and molecules is vitally important in molecular physics, materials science, nanoscience, solid state physics and many related fields. Introductory Quantum Mechanics with MATLAB is designed to be an accessible guide to quantum theory and its applications. The textbook uses the popular MATLAB programming language for the analytical and numerical solution of quantum mechanical problems, with a particular focus on clusters and assemblies of atoms. The textbook is written by a noted researcher and expert on the topic who introduces density functional theory, variational calculus and other practice-proven methods for the solution of quantum-mechanical problems. This important guide: -Presents the material in a didactical manner to help students grasp the concepts and applications of quantum theory -Covers a wealth of cutting-edge topics such as clusters, nanocrystals, transitions and organic molecules -Offers MATLAB codes to solve real-life quantum mechanical problems Written for master's and PhD students in physics, chemistry, material science, and engineering sciences, Introductory Quantum Mechanics with MATLAB contains an accessible approach to understanding the concepts of quantum theory applied to atoms, clusters, and crystals.




The Chemical Bond


Book Description

This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.