Variance Components


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.




Statistical Tests for Mixed Linear Models


Book Description

An advanced discussion of linear models with mixed or randomeffects. In recent years a breakthrough has occurred in our ability todraw inferences from exact and optimum tests of variance componentmodels, generating much research activity that relies on linearmodels with mixed and random effects. This volume covers the mostimportant research of the past decade as well as the latestdevelopments in hypothesis testing. It compiles all currentlyavailable results in the area of exact and optimum tests forvariance component models and offers the only comprehensivetreatment for these models at an advanced level. Statistical Tests for Mixed Linear Models: Combines analysis and testing in one self-containedvolume. Describes analysis of variance (ANOVA) procedures in balancedand unbalanced data situations. Examines methods for determining the effect of imbalance ondata analysis. Explains exact and optimum tests and methods for theirderivation. Summarizes test procedures for multivariate mixed and randommodels. Enables novice readers to skip the derivations and discussionson optimum tests. Offers plentiful examples and exercises, manyof which are numerical in flavor. Provides solutions to selected exercises. Statistical Tests for Mixed Linear Models is an accessiblereference for researchers in analysis of variance, experimentaldesign, variance component analysis, and linear mixed models. It isalso an important text for graduate students interested in mixedmodels.




Confidence Intervals on Variance Components


Book Description

Summarizes information scattered in the technical literature on a subject too new to be included in most textbooks, but which is of interest to statisticians, and those who use statistics in science and education, at an advanced undergraduate or higher level. Overviews recent research on constructin




Analysis of Variance for Random Models, Volume 2: Unbalanced Data


Book Description

Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs with a detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level. It also includes numerical examples to analyze data from a wide variety of disciplines as well as any worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example.




Analysis of Variance for Random Models


Book Description

Analysis of variance (ANOVA) models have become widely used tools and play a fundamental role in much of the application of statistics today. In particular, ANOVA models involving random effects have found widespread application to experimental design in a variety of fields requiring measurements of variance, including agriculture, biology, animal breeding, applied genetics, econometrics, quality control, medicine, engineering, and social sciences. This two-volume work is a comprehensive presentation of different methods and techniques for point estimation, interval estimation, and tests of hypotheses for linear models involving random effects. Both Bayesian and repeated sampling procedures are considered. Volume I examines models with balanced data (orthogonal models); Volume II studies models with unbalanced data (nonorthogonal models). Features and Topics: * Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs * Detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level * Numerical examples to analyze data from a wide variety of disciplines * Many worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example * Extensive exercise sets at the end of each chapter * Numerous appendices with background reference concepts, terms, and results * Balanced coverage of theory, methods, and practical applications * Complete citations of important and related works at the end of each chapter, as well as an extensive general bibliography Accessible to readers with only a modest mathematical and statistical background, the work will appeal to a broad audience of students, researchers, and practitioners in the mathematical, life, social, and engineering sciences. It may be used as a textbook in upper-level undergraduate and graduate courses, or as a reference for readers interested in the use of random effects models for data analysis.







NBS Special Publication


Book Description




SAS for Mixed Models


Book Description

Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.




An Author and Permuted Title Index to Selected Statistical Journals


Book Description

All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.




Doing Meta-Analysis with R


Book Description

Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book