Behavioural and Neuronal Correlates of Sensory Prioritization in the Rat Whisker System


Book Description

Animals need to assess when to initiate actions based on uncertain sensory evidence. To formulate a response, decision making systems must prioritize extraction of neuronal signals that represent ecologically relevant events from signals that are behaviorally less relevant. This is commonly known as selective attention. The current thesis aims to investigate two simple forms of attention in rodents: sensory prioritization to a specific modality and temporal cueing. The rat whisker system is functionally efficient, and anatomically well characterized. We therefore utilize the whisker touch as a model sensory system to investigate the neuronal and behavioral correlates of attention in rats. We begin this thesis by designing a novel simple detection task that investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. Detection of low-amplitude events is critical to survival, and to formulate a response, animals must extract minute neuronal signals from the sensory modality that is more likely to provide key information. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to a whisker vibration stimulus when presented with higher probability compared to the same stimulus when presented with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In Chapter 3, we replicated these findings in a forced choice paradigm and extended the investigation from somatosensory/visual to the somatosensory/auditory. Attention was similarly manipulated by controlling likelihoods of stimulus presentation. Again, we observed improvements in detection performance and reaction time, as well as improvements in discrimination performance for stimuli presented in a high-likelihood context. The behavioral consequences of a forced choice compared to simple detection task are discussed. Finally, we developed a novel task that investigated whether rats were able to dedicate attentional resources in time. Operating with some finite quantity of attentional resources, by direct these resources at the expected time, animals would benefit from prioritizing processing based on temporal cues. We manipulated temporal cueing by presenting an auditory cue that preceded a target vibration stimulus in a subset of trials. On another subset, no auditory cue was presented. Presentations of these trials were of equal probability. Critically in this paradigm, the auditory cue provided temporal information but did not provide any spatial information about the location of the vibration stimulus. The auditory cue increased detection and discrimination performances and resulted in faster responses compared to trials in which the cue was absent. We observed neuronal signatures of temporal cuing in the vibrissal area of the primary somatosensory cortex. Single units showed enhanced response to the vibration stimulus during trials in which the stimulus was temporally expected. However, we did not observe signatures of multiplicative gain control in this paradigm. Instead, a decrease in baseline activity was observed that was phase locked to the onset of the auditory cue. In summary, this thesis presents two novel paradigms to study selective attention in rats in the form of sensory prioritization and temporal cueing. In addition, we investigate the neuronal correlates of selective attention in the vibrissal area of the primary somatosensory cortex. These series of experiments establish the rat as an alternative model organism to primates for studying attention.




Sensory Adaptation


Book Description




Active Touch Sensing


Book Description

Active touch can be described as the control of the position and movement of tactile sensing systems to facilitate information gain. In other words, it is finding out about the world by reaching out and exploring—sensing by ‘touching’ as opposed to ‘being touched’. In this Research Topic (with cross-posting in both Behavioural Neuroscience and Neurorobotics) we welcomed articles from junior researchers on any aspect of active touch. We were especially interested in articles on the behavioral, physiological and neuronal underpinnings of active touch in a range of species (including humans) for submission to Frontiers in Behavioural Neuroscience. We also welcomed articles describing robotic systems with biomimetic or bio-inspired tactile sensing systems for publication in Frontiers in Neurorobotics.




Methods for Neural Ensemble Recordings


Book Description

Extensively updated and expanded, this second edition of a bestseller distills the current state-of-the-science and provides the nuts and bolts foundation of the methods involved in this rapidly growing science. With contributions from pioneering researchers, it includes microwire array design for chronic neural recordings, new surgical techniques for chronic implantation, microelectrode microstimulation of brain tissue, multielectrode recordings in the somatosensory system and during learning, as well as recordings from the central gustatory-reward pathways. It explores the use of Brain-Machine Interface to restore neurological function and proposes conceptual and technical approaches to human neural ensemble recordings in the future.




The Neurobiology of Olfaction


Book Description

Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely




Inhibitory Synaptic Plasticity


Book Description

This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.




The Motion Aftereffect


Book Description

Motion perception lies at the heart of the scientific study of vision. The motion aftereffect (MAE) is the appearance of directional movement in a stationary object or scene after the viewer has been exposed to viusal motion in the opposite direction. For example, after one has looked at a waterfall for a period of time, the scene beside the waterfall may appear to move upward when one's gaze is transfered to it. Although the phenomenon seems simple, research has revealed copmlexities in the underlying mechanisms, and offered general lessons about how the brain processes visual information. In the 1990s alone, more than 200 papers have been published on MAE, largely inspired by improved techniques for examining brain electrophysiology and by emerging new theories of motion perception.




Sensorimotor Integration in the Whisker System


Book Description

Sensorimotor integration, the dynamic process by which the sensory and motor systems communicate with each other, is crucial to humans’ and animals’ ability to explore and react to their environment. This book summarizes the main aspects of our current understanding of sensorimotor integration in 10 chapters written by leading scientists in this active and ever-growing field. This volume focuses on the whisker system, which is an exquisite model to experimentally approach sensorimotor integration in the mammalian brain. In this book, authors examine the whisker system on many different levels, ranging from the building blocks and neuronal circuits to sensorimotor behavior. Neuronal coding strategies, comparative analysis as well as robotics illustrate the multiple facets of this research and its broad impact on fundamental questions about the neurobiology of the mammalian brain.




Fitting the Mind to the World


Book Description

"This book brings together a collection of studies from international researchers who demonstrate the brain's remarkable capacity to adapt its representation of the visual world in response to changes in its environment."--BOOK JACKET.