The Resolution Revolution: Recent Advances In cryoEM


Book Description

cryoEM, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods and new developments in recording images, the creation, evaluation and validation of 3D maps from the images, model building into maps and refinement of the resulting atomic structures, and applications of essentially single particle methods to helical structures and to sub-tomogram averaging. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods that determine the structures of biological molecules, a vital step for understanding their function - Contains the technical developments underpinning the advances of cryoEM and captures the exciting insights that have resulted




Single-particle Cryo-electron Microscopy


Book Description

The book reproduces 55 of more than 300 articles written by the author, representing milestones in methods development of single-particle cryo-EM as well as important results obtained by this technique in the study of biological macromolecules and their interactions. Importantly, neither symmetries nor ordered arrangements (as in two-dimensional crystals, helical assemblies, icosahedral viruses) are required. Although the biological applications are mainly in the area of ribosome structure and function, the elucidation of membrane channel structures and their activation and gating mechanisms are represented, as well. The book is introduced by a commentary that explains the original development of concepts, describes the contributions of the author's colleagues and students, and shows how challenges were overcome as the technique matured. Along the way, the ribosome served as an example for a macromolecule with intricate structure and conformational dynamics that pose challenges for three-dimensional visualization. Toward the end of the book -- bringing us to the present time -- molecular structures with near-atomic resolution are presented, and a novel type of computational analysis, manifold embedding, is introduced. Single-particle cryo-EM is currently revolutionizing structural biology, presenting a powerful alternative to X-ray crystallography as a means to solve the structure of biological macromolecules. The book presents in one place a number of articles containing key advances in mathematical and computational methods leading up to the present time. Secondly, the development of the technique over the years is reflected by ever-expanding discoveries in the field of ribosome structure and function. Thirdly, as all histories of ideas, the history of concepts pertaining to this new method of visualization is fascinating all in itself.




Advances in Structural Biology


Book Description

The present volume continues the trend established in previous volumes in this series on Advances in Structural Biology. As in the past, diverse topics of current importance relevant to the theme of the series are included in the fourth volume.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Structural Virology


Book Description

Over the last ten years, much effort has been devoted to improving the biophysical techniques used in the study of viruses. This has resulted in the visualization of these large macromolecular assemblages at atomic level, thus providing the platform for functional interpretation and therapeutic design. Structural Virology covers a wide range of topics and is split into three sections. The first discusses the vast biophysical methodologies used in structural virology, including sample production and purification, confocal microscopy, mass spectrometry, negative-stain and cryo-electron microscopy, X-ray crystallography and nuclear magnetic resonance spectroscopy. The second discusses the role of virus capsid protein structures in determining the functional roles required for receptor recognition, cellular entry, capsid assembly, genome packaging and mechanisms of host immune system evasion. The last section discusses therapeutic strategies based on virus protein structures, including the design of antiviral drugs and the development of viral capsids as vehicles for foreign gene delivery. Each topic covered will begin with a review of the current literature followed by a more detailed discussion of experimental procedures, a step in the viral life cycle, or strategies for therapeutic development. With contributions from experts in the field of structural biology and virology this exceptional monograph will appeal to biomedical scientists involved in basic and /or applied research on viruses. It also provides up-to-date reference material for students entering the field of structural virology as well as scientists already familiar with the area.




Liquid Cell Electron Microscopy


Book Description

2.6.2 Electrodes for Electrochemistry




Structural Bioinformatics: Applications in Preclinical Drug Discovery Process


Book Description

This book reviews the advances and challenges of structure-based drug design in the preclinical drug discovery process, addressing various diseases, including malaria, tuberculosis and cancer. Written by internationally recognized researchers, this edited book discusses how the application of the various in-silico techniques, such as molecular docking, virtual screening, pharmacophore modeling, molecular dynamics simulations, and residue interaction networks offers insights into pharmacologically active novel molecular entities. It presents a clear concept of the molecular mechanism of different drug targets and explores methods to help understand drug resistance. In addition, it includes chapters dedicated to natural-product- derived medicines, combinatorial drug discovery, the CryoEM technique for structure-based drug design and big data in drug discovery. The book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the areas of chemoinformatics, medicinal and pharmaceutical chemistry and pharmacoinformatics.




Cryo-EM Part B: 3-D Reconstruction


Book Description

This volume is dedicated to a description of the instruments, samples, protocols, and analyses that belong to cryo-EM. It emphasizes the relatedness of the ideas, instrumentation, and methods underlying all cryo-EM approaches, which allow practitioners to easily move between them. Within each section, the articles are ordered according to the most common symmetry of the sample to which their methods are applied. - Includes time-tested core methods and new innovations applicable to any researcher - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide




Handbook of Nanoscopy


Book Description

This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.




Immunobiology of COVID-19


Book Description

This volume provides a comprehensive and in-depth exploration of the SARS-CoV-2 virus and its impact on human health. Written by a team of expert contributors, the book covers various aspects of the virus, including its structure, life cycle, and genomic replication. It delves into the epidemiology of COVID-19, comparing it with other related coronaviruses and discussing the concept of herd immunity. The structural biology of SARS-CoV-2 is examined, with a focus on techniques such as electron microscopy and cryo-electron tomography. The book also explores the biology of SARS-CoV-2 variants and their immune evasion strategies. Furthermore, it delves into the pathogenesis of COVID-19, examining its multiorgan manifestations and the long-term effects of the disease. The innate and adaptive immune responses to SARS-CoV-2 are discussed in detail, along with the role of B cells and T cells in the immune response. The volume concludes with a look at future insights and potential developments in the field. Accompanied by illustrative diagrams and visuals, this volume would aid in grasping complex concepts, serving as a valuable resource for researchers, healthcare professionals, and anyone interested in understanding the intricate details of SARS-CoV-2 and its impact on global health. - Comprehensive coverage of various aspects of the COVID-19 pandemic, including virus structure, variants, immune responses, disease pathogenesis including its multiorgan manifestations and long COVID - Focus on in-depth analysis of innate and adaptive immune responses to SARS-CoV-2, including B cell and T cell responses, discussing the recognition and activation mechanisms, antibody production, immunological memory as well as the role of spike proteins in immunological regulation - Richly illustrated with informative diagrams, providing visual aids to enhance understanding of complex concepts and structures related to COVID-19