Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains


Book Description

This book investigates the behaviour of weak solutions to the elliptic transmisssion problem in a neighborhood of boundary singularities: angular and conic points or edges, considering this problem both for linear and quasi-linear equations.




Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains


Book Description

The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.




Oblique Derivative Problems for Elliptic Equations in Conical Domains


Book Description

The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.




Modern Problems in Applied Analysis


Book Description

This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference “Boundary Value Problems, Functional Equations and Applications” (BAF-3), held in Rzeszow, Poland on 20-23 April 2016. The contributions presented here develop a technique related to the scope of the workshop and touching on the fields of differential and functional equations, complex and real analysis, with a special emphasis on topics related to boundary value problems. Further, the papers discuss various applications of the technique, mainly in solid mechanics (crack propagation, conductivity of composite materials), biomechanics (viscoelastic behavior of the periodontal ligament, modeling of swarms) and fluid dynamics (Stokes and Brinkman type flows, Hele-Shaw type flows). The book is addressed to all readers who are interested in the development and application of innovative research results that can help solve theoretical and real-world problems.




Elliptic and Parabolic Problems


Book Description

Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.




Elliptic Problems in Nonsmooth Domains


Book Description

Originally published: Boston: Pitman Advanced Pub. Program, 1985.




Elliptic Equations in Polyhedral Domains


Book Description

This is the first monograph which systematically treats elliptic boundary value problems in domains of polyhedral type. The authors mainly describe their own recent results focusing on the Dirichlet problem for linear strongly elliptic systems of arbitrary order, Neumann and mixed boundary value problems for second order systems, and on boundary value problems for the stationary Stokes and Navier-Stokes systems. A feature of the book is the systematic use of Green's matrices. Using estimates for the elements of these matrices, the authors obtain solvability and regularity theorems for the solutions in weighted and non-weighted Sobolev and Holder spaces. Some classical problems of mathematical physics (Laplace and biharmonic equations, Lame system) are considered as examples. Furthermore, the book contains maximum modulus estimates for the solutions and their derivatives. The exposition is self-contained, and an introductory chapter provides background material on the theory of elliptic boundary value problems in domains with smooth boundaries and in domains with conical points. The book is destined for graduate students and researchers working in elliptic partial differential equations and applications.




Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations


Book Description

This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.




Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains


Book Description

This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.