Precision Cancer Medicine


Book Description

Genomic sequencing technologies have augmented the classification of cancer beyond tissue of origin and towards a molecular taxonomy of cancer. This has created opportunities to guide treatment decisions for individual patients with cancer based on their cancer’s unique molecular characteristics, also known as precision cancer medicine. The purpose of this text will be to describe the contribution and need for multiple disciplines working together to deliver precision cancer medicine. This entails a multi-disciplinary approach across fields including molecular pathology, computational biology, clinical oncology, cancer biology, drug development, genetics, immunology, and bioethics. Thus, we have outlined a current text on each of these fields as they work together to overcome various challenges and create opportunities to deliver precision cancer medicine. As trainees and junior faculty enter their respective fields, this text will provide a framework for understanding the role and responsibility for each specialist to contribute to this team science approach.




Cancer and Noncoding RNAs


Book Description

Cancer and Noncoding RNAs offers an in-depth exploration of noncoding RNAs and their role in epigenetic regulation of complex human disease, most notably cancer. In addition to examining microRNAs, this volume provides a unique evaluation of more recently profiled noncoding RNAs now implicated in carcinogenesis, including lncRNAs, piRNAs, circRNAs, and tRNAs, identifying differences in function between these noncoding RNAs and how they interact with the rest of the epigenome. A broad range of chapters from experts in the field detail epigenetic regulation of various cancer types, along with recent next generation sequencing technologies, genome-wide association studies (GWAS) and bioinformatics approaches. This book will help researchers in genomic medicine and cancer biology better understand the role of noncoding RNAs in epigenetics, aiding in the development of useful biomarkers for diagnosis, prognosis and new RNA-based disease therapies. - Provides a comprehensive analysis of noncoding RNAs implicated in epigenetic regulation of gene expression and chromatin dynamics - Educates researchers and graduate students by highlighting, in addition to miRNAs, a range of noncoding RNAs newly associated with carcinogenesis - Applies current knowledge of noncoding RNAs and epigenomics towards developing cancer and RNA-based disease therapies - Features contributions by leading experts in the field




Ovarian Cancer Biomarkers


Book Description

This book comprehensively summarizes the biology, etiology, and pathology of ovarian cancer and explores the role of deep molecular and cellular profiling in the advancement of precision medicine. The initial chapter discusses our current understanding of the origin, development, progression and tumorigenesis of ovarian cancer. In turn, the book highlights the development of resistance, disease occurrence, and poor prognosis that are the hallmarks of ovarian cancer. The book then reviews the role of deep molecular and cellular profiling to overcome challenges that are associated with the treatment of ovarian cancer. It explores the use of genome-wide association analysis to identify genetic variants for the evaluation of ovarian carcinoma risk and prognostic prediction. Lastly, it highlights various diagnostic and prognostic ovarian cancer biomarkers for the development of molecular-targeted therapy.




MicroRNAs in Cancer


Book Description

MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and th




Hepatocellular Carcinoma


Book Description

This book provides a comprehensive overview of the current limitations and unmet needs in Hepatocellular Carcinoma (HCC) diagnosis, treatment, and prevention. It also provides newly emerging concepts, approaches, and technologies to address challenges. Topics covered include changing landscape of HCC etiologies in association with health disparities, framework of clinical management algorithm, new and experimental modalities of HCC diagnosis and prognostication, multidisciplinary treatment options including rapidly evolving molecular targeted therapies and immune therapies, multi-omics molecular characterization, and clinically relevant experimental models. The book is intended to assist collaboration between the diverse disciplines and facilitate forward and reverse translation between basic and clinical research by providing a comprehensive overview of relevant areas, covering epidemiological trend and population-level patient management strategies, new diagnostic and prognostic tools, recent advances in the standard care and novel therapeutic approaches, and new concepts in pathogenesis and experimental approaches and tools, by experts and opinion leaders in their respective fields. By thoroughly and concisely covering whole aspects of HCC care, Hepatocellular Carcinoma serves as a valuable reference for multidisciplinary readers, and promotes the development of personalized precision care strategies that lead to substantial improvement of disease burden and patient prognosis in HCC.




Long Non-Coding RNAs in Cancer


Book Description

This volume presents techniques needed for the study of long non-coding RNAs (lncRNAs) in cancer from their identification to functional characterization. Chapters guide readers through identification of lncRNA expression signatures in cancer tissue or liquid biopsies by RNAseq, single Cell RNAseq, Phospho RNAseq or Nanopore Sequencing techniques; validation of lncRNA signatures by Real time PCR, digital PCR or in situ hybridization; and functional analysis by siRNA or CRISPR based methods for lncRNA silencing or overexpression. Lipid based nanoparticles for delivery of siRNAs in vivo, lncRNA-protein interactions, viral lncRNAs and circRNAs are also treated in this volume. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and practical, Long Non-Coding RNAs in Cancer aims to provide a collection of laboratory protocols, bioinformatic pipelines, and review chapters to further research in this vital field.







Molecular Oncology: Underlying Mechanisms and Translational Advancements


Book Description

Cancer is a multifaceted and genomically complex disease and data obtained through high throughput technologies has provided near complete resolution of the landscape of how genomic, genetic and epigenetic mutations in cancerous cells effectively influence homeostasis of signaling networks within these cells, between cancerous cells, tumor microenvironment and at the organ level. Increasingly sophisticated information has helped us in developing a better understanding of the underlying mechanisms of cancer, and it is now known that intra-tumor genetic heterogeneity, cellular plasticity, dysregulation of spatio-temporally controlled signaling cascades, and loss of apoptosis are contributory in cancer development, progression and the development of resistance against different therapeutics. It is becoming progressively more understandable that earlier detection of pre-existing or emerging resistance against different therapeutics may prove to be helpful in personalizing the use of targeted cancer therapy. Despite the fact that there is a continuously increasing list of books, being guest edited by researchers, books on the subject are often composed of invited reviews without proper sequence and continuity and designed for a particular readership. This book progressively shifts and guides the readers from basic underlying mechanisms to translational approaches to treat cancer.