The Role of Population Games in the Design of Optimization-Based Controllers


Book Description

This book reports on the implementation of evolutionary-game theory in the design of distributed optimization-based controllers. First, it discusses how the classical population-game approach can contribute to and complement the design of optimization-based controllers. It shows how the features of this approach can be exploited to extend their capabilities in the solution of distributed optimization problems, and examines density games in order to consider multiple coupled constraints and preserve the non-centralized information requirements. Furthermore, it establishes a close relationship between the possible interactions among agents in a population with constrained information sharing among different local controllers. It also discusses coalitional games, focusing on the Shapley power index and proposes an alternative method of computing the latter, which reduces computational time, as well as a different way of finding it using distributed communication structures. All the proposed strategies are then tested on various control problems, such as those related to the Barcelona water supply network, multiple continuous stirred tank reactors, various unmanned aerial vehicle systems, and a water distribution system. This thesis, examined at the Universitat Politècnica de Catalunya and Universidad de los Andes in 2017, received the award for best thesis in control from the control group of the Spanish Committee of Automatic Control (CEA) in the same year.




Mean-Field-Type Games for Engineers


Book Description

The contents of this book comprise an appropriate background to start working and doing research on mean-field-type control and game theory. To make the exposition and explanation even easier, we first study the deterministic optimal control and differential linear-quadratic games. Then, we progressively add complexity step-by-step and little-by-little to the problem settings until we finally study and analyze mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients. We go beyond the Nash equilibrium, which provides a solution for non- cooperative games, by analyzing other game-theoretical concepts such as the Berge, Stackelberg, adversarial/robust, and co-opetitive equilibria. For the mean-field-type game analysis, we provide several numerical examples using a Matlab-based user-friendly toolbox that is available for the free use to the readers of this book. We present several engineering applications in both continuous and discrete time. Among these applications we find the following: water distribution systems, micro-grid energy storage, stirred tank reactor, mechanism design for evolutionary dynamics, multi-level building evacuation problem, and the COVID-19 propagation control. Julian Barreiro-Gomez Hamidou Tembine With such a demand from engineering audiences, this book is very timely and provides a thorough study of mean-field-type game theory. The strenuous protagonist of this book is to bridge between the theoretical findings and engineering solutions. The book introduces the basics first, and then mathematical frameworks are elaborately explained. The engineering application examples are shown in detail, and the popular learning approaches are also investigated. Those advantageous characteristics will make this book a comprehensive handbook of many engineering fields for many years, and I will buy one when it gets published. Zhu Han




Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments


Book Description

This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.




Developments in Model-Based Optimization and Control


Book Description

This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This volume presents up-to-date material on the state of the art in evolutionary and deterministic methods for design, optimization and control with applications to industrial and societal problems from Europe, Asia, and America. EUROGEN 2015 was the 11th of a series of International Conferences devoted to bringing together specialists from universities, research institutions and industries developing or applying evolutionary and deterministic methods in design optimization, with emphasis on solving industrial and societal problems. The conference was organised around a number of parallel symposia, regular sessions, and keynote lectures focused on surrogate-based optimization in aerodynamic design, adjoint methods for steady & unsteady optimization, multi-disciplinary design optimization, holistic optimization in marine design, game strategies combined with evolutionary computation, optimization under uncertainty, topology optimization, optimal planning, shape optimization, and production scheduling.




Multi-Objective Optimization System Designs and Their Applications


Book Description

This book introduces multi-objective design methods to solve multi-objective optimization problems (MOPs) of linear/nonlinear dynamic systems under intrinsic random fluctuation and external disturbance. The MOPs of multiple targets for systems are all transformed into equivalent linear matrix inequality (LMI)-constrained MOPs. Corresponding reverse-order LMI-constrained multi-objective evolution algorithms are introduced to solve LMI-constrained MOPs using MATLAB®. All proposed design methods are based on rigorous theoretical results, and their applications are focused on more practical engineering design examples. Features: Discusses multi-objective optimization from an engineer’s perspective Contains the theoretical design methods of multi-objective optimization schemes Includes a wide spectrum of recent research topics in control design, especially for stochastic mean field diffusion problems Covers practical applications in each chapter, like missile guidance design, economic and financial systems, power control tracking, minimization design in communication, and so forth Explores practical multi-objective optimization design examples in control, signal processing, communication, and cyber-financial systems This book is aimed at researchers and graduate students in electrical engineering, control design, and optimization.




Network Games, Control, and Optimization


Book Description

This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other related fields.




The Role of Population Games in the Design of Optimization-based Controllers: a Large-scale Insight


Book Description

This thesis is mainly devoted to the study of the role of evolutionary-game theory in the design of distributed optimization-based controllers. Game theoretical approaches have been used in several engineering fields, e.g., drainage wastewater systems, bandwidth allocation, wireless networks, cyber security, congestion games, wind turbines, temperature control, among others. On the other hand, a specific class of games, known as population games, have been mainly used in the design of controllers to manage a limited resource. This game approach is suitable for resource allocation problems since, under the framework of full-potential games, the population games can satisfy a unique coupled constraint while maximizing a potential function. First, this thesis discusses how the classical approach of the population games can contribute and complement the design of optimization-based controllers. Therefore, this dissertation assigns special interest on how the features of the population-game approach can be exploited extending their capabilities in the solution of distributed optimization problems. In addition, density games are studied in order to consider multiple coupled constraints and preserving the non-centralized information requirements. Furthermore, it is established a close relationship between the possible interactions among agents in a population with the constrained information sharing among different local controllers. On the other hand, coalitional games are discussed focusing on the Shapley power index. This power index has been used to assign an appropriate rewarding to players in function of their contributions to all possible coalitions. Even though this power index is quite useful in the engineering context, since it involves notions of fairness and/or relevance (how important players are), the main difficulty of the implementation of the Shapley value in engineering applications is related to the high computational burden. Therefore, this dissertation studies the Shapley value in order to propose an alternative manner to compute it reducing computational time, and a different way to find it by using distributed communication structures is presented. The studied game theoretical approaches are suitable for the modeling of rational agents involved in a strategic constrained interaction, following local rules and making local decisions in order to achieve a global objective. Making an analogy, distributed optimization-based controllers are composed of local controllers that compute optimal inputs based on local information (constrained interactions with other local controllers) in order to achieve a global control objective. In addition to this analogy, the features that relate the Nash equilibrium with the Karush-Kuhn-Tucker conditions for a constrained optimization problem are exploited for the design of optimization-based controllers, more specifically, for the design of model predictive controller. Moreover, the design of non-centralized controllers is directly related to the partitioning of a system, i.e., it is necessary to represent the whole system as the composition of multiple sub-systems. This task is not a trivial procedure since several considerations should be taken into account, e.g., availability of information, dynamical coupling in the system, regularity in the amount of variables for each sub-system, among others. Then, this doctoral dissertation also discusses the partitioning problem for large-scale systems and the role that this procedure plays in the design of distributed optimization-based controllers. Finally, dynamical partitioning strategies are presented with distributed population-games-based controllers. Some engineering applications are presented to illustrate and test the performance of all the proposed control strategies, e.g., the Barcelona water supply network, multiple continuous stirred tank reactors, system of multiple unmanned aerial vehicles.




Real-time Monitoring and Operational Control of Drinking-Water Systems


Book Description

This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.




Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems


Book Description

This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.