Nonlinear Surface Electromagnetic Phenomena


Book Description

In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are dealt with. Included are discussions of nonlinear wave mixing on films and surfaces, second harmonic generation in waveguides and at surfaces, nonlinear waves guided by dielectric and semiconductor surfaces and films, surface gratings formed by high energy laser beams, and reflection and transmission switching of strong beams onto nonlinear surfaces. Chapters on light scattering from surface excitations and magnetic order-disorder and orientational phase transitions complete this essential contribution to the modern optics literature.




Nonlinear Optics


Book Description

Intended for readers with a background in classical electromagnetic theory, this book develops the basic principles that underlie nonlinear optical phenomena in matter. It begins with a discussion of linear wave propagation in dispersive media, moves into weak nonlinearities which can be discussed in a pertuberative manner, then it examines strong nonlinear effects (solitons, chaos). The emphasis is on the macroscopic description on nonlinear phenomena, within a semiclassical framework. Two new chapters cover surface optics and magneto-optic phenomena. The book is aimed at the student or researcher who is not a specialist in optics but needs an introduction to the principal concepts.




Electromagnetic Resonances in Nonlinear Optics


Book Description

This book is devoted to the numerous phenomena arising from the interplay between electromagnetic resonances and nonlinear optical interactions. These resonances are associated with surface plasmas or guided waves, excited in nonlinear optical resonators such as prisms or grating couplers. Topics include rigorous theories of diffraction by gratings in nonlinear optics, presented in a form ready for numerical implementations; scattering the matrix description in nonlinear optics leading to the phenomological approach based on the use of poles and zeros and other behaviours.




Nonlinear Waves in Solid State Physics


Book Description

This book is based on the contributions to the 17th International School of Materials Sci ence and Technology, entitled Nonlinear Waves in Solid State Physics. This was held as a NATO Advanced Study Institute at the Ettore Majorana Centre in Erice, Sicily between the st th 1 and 15 July 1989, and attracted almost 100 participants from over 20 different countries. The book covers the fundamental properties of nonlinear waves in solid state materials, dealing with both theory and experiment. The aim is to emphasise the methods underpinning the important new developments in this area. The material is organised into subject areas that can broadly be classified into the following groups: the theory of nonlinear surface and guided waves in self-focusing magnetic and non-magnetic materials; nonlinear effects at in terfaces; nonlinear acoustoelectronic and surface acoustic waves; Lagrangian and Hamiltonian formulations of nonlinear problems; nonlinear effects in optical fibres; resonance phenomena; and nonlinear integrated optics. The chapters have been grouped together according to these classifications as closely as possible, but it should be borne in mind that although there is much overlap of ideas, each chapter is essentially independent of the others. We would like to acknowledge the sponsorship of the NATO Scientific Affairs Division, the European Physical Society, the National Science Foundation of the USA, the European Research Office, the Italian Ministry of Education, the Italian Ministry of Scientific and Technological Research, the Sicilian Regional Government and the Ugo Bordoni Foundation.







Electromagnetics and Optics


Book Description

The book addresses the natural link between electromagnetics and optics. The electromagnetic origin of optical phenomena is sought through a dual approach to optics which is based on the wave equation and ray theory. A review of the underlying principles, as well as mechanisms of wave/ray interactions with matter are presented first. An examination of guided propagation of light through various dielectric waveguides follows. Aspects of resonant light propagation, such as Gaussian beams, resonators and lasers, are treated next. The basic theory of light processing by optical elements is presented in the fourth part which covers Fourier optics, the scalar theory of diffraction and holography. The book further refers to miscellaneous topics, such as optical radiation, remote sensing and nonlinear phenomena.




Optical Nonlinearities in Nanostructured Systems


Book Description

This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it. This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are also discussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.




Nonlinear Optics in Solids


Book Description

In recent years one has witnessed in physics a substantial increase in interest in carrying out fundamental studies in the nonlinear optics of condensed matter. At the Danish universities, this increase has been especially pronounced at the Institute of Physics at the University of Aalborg, where the main activities are centered around fundamental research within the domains of nonlinear quantum optics, nonlinear optics of metals and superconductors, and nonlinear surface optics. In recognition of this it was decided to arrange the first international summer school on nonlinear optics in Denmark at the Institute of Physics at the University of Aalborg. This book is based on the lectures and contributed papers presented at this international summer school, which was held in the period 31 July-4 Au gust 1989. About 60 experienced and younger scientists from 12 different countries participated. Twenty-eight lectures were given by 14 distinguished scientists from the United States, Italy, France, Germany, Scotland, England, and Denmark. In addition to the lectures given by the invited speakers, 11 contributed papers were presented. The programme of the summer school em phasized a treatment of basic physical properties of the nonlinear interaction of light and condensed matter and both theoretical and experimental aspects were covered. Furthermore, general principles as well as topics of current interest in the research literature were discussed.




Nonlinear Optics


Book Description

This book examines nonlinear optical effects in nonlinear nanophotonics, plasmonics, and novel materials for nonlinear optics. It discusses different types of plasmonic excitations such as volume plasmons, localized surface plasmons, and surface plasmon polaritons. It also examines the specific features of nonlinear optical phenomena in plasmonic nanostructures and metamaterials. Chapters cover such topics as applications of nanophotonics, novel materials for nonlinear optics based on nanoparticles, polymers, and photonic glasses.