Book Description
Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.
Author : Eva A. Gallardo-Gutieŕrez
Publisher : American Mathematical Soc.
Page : 98 pages
File Size : 44,49 MB
Release : 2004
Category : Mathematics
ISBN : 0821834320
Introduction and preliminaries Linear fractional maps with an interior fixed point Non elliptic automorphisms The parabolic non automorphism Supercyclic linear fractional composition operators Endnotes Bibliography.
Author : Joseph A. Ball
Publisher : Springer Science & Business Media
Page : 624 pages
File Size : 29,38 MB
Release : 2011-02-09
Category : Mathematics
ISBN : 3034601581
This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.
Author : Rocky Mountain Mathematics Consortium
Publisher : American Mathematical Soc.
Page : 266 pages
File Size : 41,27 MB
Release : 1998
Category : Mathematics
ISBN : 0821807684
This book reflects the proceedings of the 1996 Rocky Mountain Mathematics Consortium conference on "Composition Operators on Spaces of Analytic Functions" held at the University of Wyoming. The readers will find here a collection of high-quality research and expository articles on composition operators in one and several variables. The book highlights open questions and new advances in the classical areas and promotes topics which are left largely untreated in the existing texts. In the past two decades, the study of composition operators has experienced tremendous growth. Many connections between the study of these operators on various function spaces and other branches of analysis have been established. Advances in establishing criteria for membership in different operator classes have led to progress in the study of the spectra, adjoints, and iterates of these operators. More recently, connections between these operators and the study of the invariant subspace problem, functional equations, and dynamical systems have been exploited.
Author : Nicole Bopp
Publisher : American Mathematical Soc.
Page : 250 pages
File Size : 25,45 MB
Release : 2005
Category : Mathematics
ISBN : 0821836234
Intends to prove a functional equation for a local zeta function attached to the minimal spherical series for a class of real reductive symmetric spaces.
Author : Jason Fulman
Publisher : American Mathematical Soc.
Page : 104 pages
File Size : 17,34 MB
Release : 2005
Category : Mathematics
ISBN : 0821837060
Generating function techniques are used to study the probability that an element of a classical group defined over a finite field is separable, cyclic, semisimple or regular. The limits of these probabilities as the dimension tends to infinity are calculated in all cases, and exponential convergence to the limit is proved. These results complement and extend earlier results of the authors, G. E. Wall, and Guralnick & Lubeck.
Author : Enrique Artal-Bartolo
Publisher : American Mathematical Soc.
Page : 100 pages
File Size : 19,42 MB
Release : 2005-10-05
Category : Functions, Zeta
ISBN : 9780821865637
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
Author : Stefano Pigola
Publisher : American Mathematical Soc.
Page : 118 pages
File Size : 45,45 MB
Release : 2005
Category : Mathematics
ISBN : 0821836390
Aims to introduce the reader to various forms of the maximum principle, starting from its classical formulation up to generalizations of the Omori-Yau maximum principle at infinity obtained by the authors.
Author : Yaozhong Hu
Publisher : American Mathematical Soc.
Page : 144 pages
File Size : 34,11 MB
Release : 2005
Category : Mathematics
ISBN : 0821837044
A paper that studies two types of integral transformation associated with fractional Brownian motion. They are applied to construct approximation schemes for fractional Brownian motion by polygonal approximation of standard Brownian motion. This approximation is the best in the sense that it minimizes the mean square error.
Author :
Publisher : American Mathematical Soc.
Page : 146 pages
File Size : 45,17 MB
Release :
Category :
ISBN : 0821834614
Author : Javier Fernández de Bobadilla
Publisher : American Mathematical Soc.
Page : 154 pages
File Size : 23,60 MB
Release : 2005
Category : Mathematics
ISBN : 0821835939
Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph