Solar and Space Physics


Book Description

In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.




Plasma Turbulence in the Solar System


Book Description

Dynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in physics in both theories and experiments. This book is an up-to-date summary and review of recent results in research on waves and turbulence in near-Earth space plasma turbulence, obtained by Cluster, the multi-spacecraft mission. Spatial and temporal structures of solar wind turbulence as well as its interaction with the bow shock ahead of the Earth are presented using Cluster data. The book presents (1) historical developments, (2) theoretical background of plasma physics, turbulence theories, and the plasma physical picture of the solar system, (3) analysis methods for multi-spacecraft data, (4) results of Cluster data analysis, and (5) impacts on astrophysics and Earth sciences.




Turbulence in the Solar Wind


Book Description

This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.




Multiscale Coupling of Sun-Earth Processes


Book Description

Full text e-book available as part of the Elsevier ScienceDirect Earth and Planetary Sciences subject collection.




Space Physics and Aeronomy, Magnetospheres in the Solar System


Book Description

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief







Problems of Geocosmos—2022


Book Description

Problems of Geocosmos conference proceedings series provide a snapshot of current research in a broad area of Earth Sciences carried out in Russia and elsewhere. Themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology and geodynamics, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is one of the largest forums of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.







Dayside Magnetosphere Interactions


Book Description

Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors