The New Science of Strong Materials


Book Description

This new edition of the book on the properties of materials used in engineering answers some fundamental questions about how the material world around us functions. In particular: the author focuses on so-called strong materials, such as metals, wood, ceramics, glass, and bone. For each material in question, the author explains the unique physical and chemical basis for its inherent structural qualities. He also shows how an in-depth understanding of these materials' intrinsic strengths (and weaknesses) guides our engineering choices, allowing us to build the structures that support our modern society.




Made to Measure


Book Description

Made to Measure introduces a general audience to one of today's most exciting areas of scientific research: materials science. Philip Ball describes how scientists are currently inventing thousands of new materials, ranging from synthetic skin, blood, and bone to substances that repair themselves and adapt to their environment, that swell and flex like muscles, that repel any ink or paint, and that capture and store the energy of the Sun. He shows how all this is being accomplished precisely because, for the first time in history, materials are being "made to measure": designed for particular applications, rather than discovered in nature or by haphazard experimentation. Now scientists literally put new materials together on the drawing board in the same way that a blueprint is specified for a house or an electronic circuit. But the designers are working not with skylights and alcoves, not with transistors and capacitors, but with molecules and atoms. This book is written in the same engaging manner as Ball's popular book on chemistry, Designing the Molecular World, and it links insights from chemistry, biology, and physics with those from engineering as it outlines the various areas in which new materials will transform our lives in the twenty-first century. The chapters provide vignettes from a broad range of selected areas of materials science and can be read as separate essays. The subjects include photonic materials, materials for information storage, smart materials, biomaterials, biomedical materials, materials for clean energy, porous materials, diamond and hard materials, new polymers, and surfaces and interfaces.




Physics and Engineering of New Materials


Book Description

This book presents the majority of the contributions to the Tenth German-Vietnamese Seminar on Physics and Engineering (GVS10) that took place in the Gustav- Stresemann-Institut (GSI) in Bonn from June 6 to June 9, 2007. In the focus of these studies are the preparation and basic properties of new material systems, related investigation methods, and practical applications. Accordingly the sections in this book are entitled electrons: transport and confinement, low-dimensional systems, magnetism, oxidic materials, organic films, new materials, and methods. The series of German-Vietnamese seminars was initiated and sponsored by the Gottlieb Daimler- and Karl Benz -Foundation since 1998 and took place alt- nately in both countries. These bilateral meetings brought together top-notch senior and junior Vietnamese scientists with German Scientists and stimulated many contacts and co-operations. Under the general title “Physics and Engine- ing” the programs covered, in the form of keynote-lectures, oral presentations and posters, experimental and theoretical cutting-edge material-physics oriented topics. The majority of the contributions was dealing with modern topics of material science, particularly nanoscience, which is a research field of high importance also in Vietnam. Modern material science allows a quick transfer of research results to technical applications, which is very useful for fast developing countries like Vietnam. On the other hand, the seminars took profit from the strong cro- fertilization of the different disciplines of physics. This book is dedicated to the tenth anniversary of the seminars and nicely shows the scientific progress in Vietnam and the competitive level reached.







Concepts of Materials Science


Book Description

All technologies depend on the availability of suitable materials. The progress of civilisation is often measured by the materials people have used, from the stone age to the silicon age. Engineers exploit the relationships between the structure, properties and manufacturing methods of a material to optimise their design and production for particular applications. Scientists seek to understand and predict those relationships. This short book sets out fundamental concepts that underpin the science of materials and emphasizes their relevance to mainstream chemistry, physics and biology. These include the thermodynamic stability of materials in various environments, quantum behaviour governing all matter, and active matter. Others include defects as the agents of change in crystalline materials, materials at the nanoscale, the emergence of new science at increasing length scales in materials, and man-made materials with properties determined by their structure rather than their chemistry. The book provides a unique insight into the essence of materials science at a level suitable for pre-university students and undergraduates of materials science. It will also be suitable for graduates in other subjects contemplating postgraduate study in materials science. Professional materials scientists will also find it stimulating and occasionally provocative.




Understanding Materials Science


Book Description

This introduction for engineers examines not only the physical properties of materials, but also their history, uses, development, and some of the implications of resource depletion and materials substitutions.




Material Matters


Book Description

Material Matters: New Materials in Design is a unique exploration of the range of high-tech materials being developed today.




New Materials in Civil Engineering


Book Description

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies




The Science and Engineering of Materials, Enhanced, Si Edition


Book Description

Develop a thorough understanding of the relationships between structure, processing and the properties of materials with Askeland/Wright's THE SCIENCE AND ENGINEERING OF MATERIALS, ENHANCED, SI, 7th Edition. This updated, comprehensive edition serves as a useful professional reference tool both now and throughout future coursework in manufacturing, materials, design or materials selection. This science-based approach to materials engineering highlights how the structure of materials at various length scales gives rise to materials properties. You examine how the connection between structure and properties is key to innovating with materials, both in the synthesis of new materials as well as in new applications with existing materials. You also learn how time, loading and environment all impact materials -- a key concept that is often overlooked when using charts and databases to select materials. Trust this enhanced edition for insights into success in materials engineering today.




Materials Research for Manufacturing


Book Description

This book is about applied materials research in industry. It presents various important topics and challenges and gives guidance to materials researchers who move to industry. The book focuses on the materials manufacturing issues for industrial application. It deals with developments and challenges in traditional materials areas, such as metals and ceramics, and new opportunities that have risen from nanotechnology and additive manufacturing. The chapters, written by senior people from large companies, include successful manufacturing undertakings, several distinct and unresolved manufacturing challenges, with the focus on approaches, timelines and the skills needed for future company research and development. The book provides a cross-section of current and future approaches valuable for new employees and academics working in industry.