The Selected Works of John W. Cahn


Book Description

This book represents a collection of 30 selected papers from thework of John W. Cahn. Dr. Cahn is Senior Fellow at the MaterialsScience and Engineering Laboratory of the National Institute ofStandards and Technology, and is widely recognized as a founder ofmodern theory and thought in materials science. The range of hisresearch included kinetics and mechanisms of metallurgical phasechanges, surfaces, interfaces, defects, quasicrystals,thermodynamics, and other areas impacting the fundamentalunderstanding of materials science. Each paper includes a 2-4 page review of the impact andhistorical perspective of the work. This is an important collectionfor students, instructors, and scientists interested in materialsscience.




The Selected Works of John W. Cahn


Book Description

This book represents a collection of 30 selected papers from the work of John W. Cahn. Dr. Cahn is Senior Fellow at the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, and is widely recognized as a founder of modern theory and thought in materials science. The range of his research included kinetics and mechanisms of metallurgical phase changes, surfaces, interfaces, defects, quasicrystals, thermodynamics, and other areas impacting the fundamental understanding of materials science. Each paper includes a 2-4 page review of the impact and historical perspective of the work. This is an important collection for students, instructors, and scientists interested in materials science.




Thermal Physics


Book Description

In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. - Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers - Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers - Develops content systematically with increasing order of complexity - Self-contained, including nine appendices to handle necessary background and technical details




Proceedings of the 13th World Conference on Titanium


Book Description

This book contains the Proceedings of the 13th World Conference on Titanium.




Handbook of Materials Modeling


Book Description

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.




Kinetics of Materials


Book Description

KINETICS OF MATERIALS A CLASSROOM-TESTED TEXTBOOK PROVIDING A FUNDAMENTAL UNDERSTANDING OF BASIC KINETIC PROCESSES IN MATERIALS This textbook, reflecting the hands-on teaching experience of its three authors, evolved from Massachusetts Institute of Technology’s first-year graduate curriculum in the Department of Materials Science and Engineering. It discusses key topics collectively representing the basic kinetic processes that cause changes in the size, shape, composition, and atomistic structure of materials. Readers gain a deeper understanding of these kinetic processes and of the properties and applications of materials. Topics are introduced in a logical order, enabling students to develop a solid foundation before advancing to more sophisticated topics. Kinetics of Materials begins with diffusion. offering a description of the elementary manner in which atoms and molecules move around in solids and liquids. Next, the more complex motion of dislocations and interfaces is addressed. Finally, still more complex kinetic phenomena, such as morphological evolution and phase transformations, are treated. Throughout the textbook, readers are instilled with an appreciation of the subjects analytic foundations and, in many cases, the approximations commonly used in the field. The authors offer many extensive derivations of important results to help illuminate their origins. While the principal focus is on kinetic phenomena in crystalline materials, select phenomena in noncrystalline materials are also discussed. In many cases, the principles involved apply to all materials. Exercises with accompanying solutions are provided throughout Kinetics of Materials, enabling readers to put their newfound knowledge into practice. In addition, bibliographies are offered with each chapter, helping readers to investigate specialized topics in greater detail. Several appendices presenting important background material are also included. With its unique range of topics, progressive structure, and extensive exercises, this classroom- tested textbook provides an enriching learning experience for first-year graduate students.




Principles Of Classical Thermodynamics: Applied To Materials Science


Book Description

The aim of this book is to present Classical Thermodynamics in a unified way, from the most fundamental principles to non-uniform systems, thereby requiring the introduction of coarse graining methods, leading for instance to phase field methods. Solutions thermodynamics and temperature-concentration phase diagrams are covered, plus also a brief introduction to statistical thermodynamics and topological disorder. The Landau theory is included along with a general treatment of multicomponent instabilities in various types of thermodynamic applications, including phase separation and order-disorder transitions. Nucleation theory and spinodal decomposition are presented as extreme cases of a single approach involving the all-important role of fluctuations.In this way, it is hoped that this coverage will reconcile in a unified manner techniques generally presented separately in physics and materials texts.




NIST Special Publication


Book Description




Unconventional Oil and Gas Resources Handbook


Book Description

Unconventional Oil and Gas Resources Handbook: Evaluation and Development is a must-have, helpful handbook that brings a wealth of information to engineers and geoscientists. Bridging between subsurface and production, the handbook provides engineers and geoscientists with effective methodology to better define resources and reservoirs. Better reservoir knowledge and innovative technologies are making unconventional resources economically possible, and multidisciplinary approaches in evaluating these resources are critical to successful development. Unconventional Oil and Gas Resources Handbook takes this approach, covering a wide range of topics for developing these resources including exploration, evaluation, drilling, completion, and production. Topics include theory, methodology, and case histories and will help to improve the understanding,integrated evaluation, and effective development of unconventional resources. - Presents methods for a full development cycle of unconventional resources, from exploration through production - Explores multidisciplinary integrations for evaluation and development of unconventional resources and covers a broad range of reservoir characterization methods and development scenarios - Delivers balanced information with multiple contributors from both academia and industry - Provides case histories involving geological analysis, geomechanical analysis, reservoir modeling, hydraulic fracturing treatment, microseismic monitoring, well performance and refracturing for development of unconventional reservoirs




Book Review Index


Book Description

Every 3rd issue is a quarterly cumulation.