The Short Range Anti-Gravitational Force and the Hierarchically Stratified Space-Time Geometry in 12 Dimensions


Book Description

The fi eld of cosmology may be on the verge of a signifi cant paradigm shift, as there is an increasing awareness that scientists have missed something fundamental as they carry on in their quest for a theory of everything and a theory that unites general relativity with quantum mechanics. Knight proposes a new theory suggesting that the space-time geometry possesses a complex hierarchical structure that comprises twelve dimensionsnine space dimensions and three time. Furthermore, this structure is divided into three strata, each of which has its own four-dimensional structure and stratum-specifi c fundamental forces and parameterswith variations in the gravitational constant G, the speed of light c, and the Planck constant. Through the pages of this work, this theory is further explained.




The Worldwide List of Alternative Theories and Critics


Book Description

This Worldwide List of Alternative Theories and Critics (only avalailable in english language) includes scientists involved in scientific fields. The 2023 issue of this directory includes the scientists found in the Internet. The scientists of the directory are only those involved in physics (natural philosophy). The list includes 9700 names of scientists (doctors or diplome engineers for more than 70%). Their position is shortly presented together with their proposed alternative theory when applicable. There are nearly 3500 authors of such theories, all amazingly very different from one another. The main categories of theories are presented in an other book of Jean de Climont THE ALTERNATIVE THEORIES




Extra Dimensions


Book Description

The large separation between the weak scale {approx} 10{sup 3} GeV and the traditional scale of gravity--the Planck scale with M{sub PI} {approx} 10{sup 19} GeV--is one of the most puzzling aspects of nature. The origin of this large ratio, as well as its stability under radiative corrections, demands explanation. This is known as the hierarchy problem. One theoretical means of solving this problem is to introduce Supersymmetry. Alternatively one may hope to address the hierarchy by exploiting the geometry of space time. Specifically, recent theories involve the idea that the 3-spatial dimensions in which we live could be a 3-spatial-dimensional ''membrane'' embedded in a much larger extra dimensional space, and that the hierarchy is generated by the geometry of the additional dimensions. Such ideas have led to extra dimensional theories which have verifiable consequences at the TeV scale. Our knowledge of the weak and strong forces extends down to scales of {approx} (100 GeV){sup -1} (or of order 10{sup -15} mm). On the other hand, we have almost no knowledge of gravity at distances less than roughly a millimeter, as direct tests of the gravitational force at the smallest distances are based on torsion-balance experiments, which are mechanically limited. It is thus conceivable that gravity may behave quite differently from the 3-dimensional Newtonian theory at small distances. This leads to the possibility that matter and non-gravitational forces are confined to our 3-dimensional subspace, whereas gravity may propagate throughout a higher dimensional volume. In this case, the gauge forces are trapped within our 3-dimensional space, unaware of the extra dimensions, and maintain their usual behavior. Gravity, on the other hand, would no longer follow the inverse-square force law at distances smaller than the size of the extra dimensions, as the gravitational equivalent of Gauss' Law mandates that the gravitational field spreads out into the full spatial volume. Since Newton's Law must be reproduced at large distances, gravity must behave as if there were only three spatial dimensions for r & 1 mm. This is achievable either by compactifying all the extra dimensions on circles, where the geometry of these dimensions is thus flat and the topology is that of a torus, or by using strong curvature effects in the extra dimensions. In the first case, Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1,2] used this picture to generate the hierarchy by postulating a large volume for the extra dimensional space, building on earlier ideas in Refs. 3,4. In the latter case, the hierarchy can be established by a large curvature of the extra dimensions as demonstrated by Randall and Sundrum (RS) [5,6]. It is the relation of these models to the hierarchy which yields testable predictions at the TeV scale.




Topological Properties and Global Structure of Space-Time


Book Description

The Ninth Course of the International School of Cosmology and Gravita tion of the Ettore Majorana Centre for Scientific Culture is concerned with "Topological Properties and Global Structure of Space-Time." We consider this topic to possess great importance. Our choice has also been influenced by the fact that there are many quest ions as yet unre solved. Standard general relativity describes space-time as a four-dimensional pseudo-Riemannian manifold, but it does not prescribe its large-scale structure. Inorderto attempt answers to some topological questions, such as whether our universe is open or closed, whether it is orientable, and whether it is complete or possesses singularities, various theoretical approaches to global aspects of gravitational physics are presented here. As topological questions playa role in non-standard theories as weIl, it will be found that some of the lectures and seminar talks in this volume adopt the point of view of standard relativity, whereas others are based on different theories, such as Kaluza-Klein theories, bimetric theories, and supergravity. We have found it difficult to organize these papers into classes, say standard and non-standard theory, or models with and without singularities. One paper, by R. Reasenberg, is experimental. Its purpose was to give the theorists present an inkling of the opportunities, as weIl as the pitfalls, of experimental research in gravitational physics. Accordingly, we have arranged all contributions alphabetically, by ~first-named) author.




Spacetime and Gravitation


Book Description

Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. Spacetime and Gravitation is a short introduction to this theory. It is addressed to a fairly wide readership: parts of it can be read by university students of mathematics, physics and engineering. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.




Spacetime and Geometry


Book Description

Why is the universe so symmetrical? / Dennis Sciama -- Null congruences and Plebanski-Schild spaces / Ivor Robinson -- Linearization stability / Dieter Brill -- Nonlinear model field theories based on harmonic mappings / Charles W. Misner -- Gravitational fields in general relativity / Roy F. Kerr -- On the potential barriers surrounding the Schwarzschild black hole / S. Chandrasekhar -- The initial value problem and beyond / James W. York, Jr. and Tsvi Piran.




Spacetime


Book Description

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.




Space, Time and Geometry


Book Description

The articles in this volume have been stimulated in two different ways. More than two years ago the editor of Synthese, laakko Hintikka, an nounced a special issue devoted to space and time, and articles were solicited. Part of the reason for that announcement was also the second source of papers. Several years ago I gave a seminar on special relativity at Stanford, and the papers by Domotor, Harrison, Hudgin, Latzer and myself partially arose out of discussion in that seminar. All of the papers except those of Griinbaum, Fine, the second paper of Friedman, and the paper of Adams appeared in a special double issue of Synthese (24 (1972), Nos. 1-2). I am pleased to have been able to add the four additional papers mentioned in making the special issue a volume in the Synthese Library. Of these four additional articles, only the one by Fine has pre viously appeared in print (Synthese 22 (1971), 448-481); its relevance to the present volume is apparent. In preparing the papers for publication and in carrying out the various editonal chores of such a task, I am very much indebted to Mrs. Lillian O'Toole for her extensive assistance. INTRODUCTION The philosophy of space and time has been of permanent importance in philosophy, and most of the major historical figures in philosophy, such as Aristotle, Descartes and Kant, have had a good deal to say about the nature of space and time.




Deformed Spacetime


Book Description

This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.




Spacetime, Geometry, Cosmology


Book Description

Novel interpretation of the relationship between space, time, gravitation, and their cosmological implications; based on author's discovery of a value in gravitation overlooked by both Newton and Einstein. 1982 edition.