The Signal of Weak Gravitational Lensing from Galaxy Groups and Clusters


Book Description

The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies. We used M> 10 [superscript 13.5] h−1M[sun] halos from the MultiDark Planck simulation at z~0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generated azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs. We find that fits to the reduced shear for halos extending past [approximately equal] 2h−1Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45° rotated component to the reduced tangential shear, and is a breakdown in the approximation of g[subscript tan][approximately equal]g[subscript tot] required for density profile fitting of clusters. If fits are constrained to a projected radii of




Gravitational Lensing: Strong, Weak and Micro


Book Description

The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.




Shapes Of Galaxies And Their Dark Halos, The - Proceedings Of The Yale Cosmology Workshop


Book Description

This book constitutes the proceedings of a very topical workshop aimed at understanding the shapes of the baryonic and dark matter components of galaxies. Several groups presented their recent results from observations and numerical N-body simulations.










Weak Lensing by Galaxy Clusters


Book Description

The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges (Chapter 2, Gruen et al. 2015a) and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image (Chapter 3, Gruen et al. 2014a). Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies (Section 5.3.1). The main scientific results are the following. (i) For th! e Hubble Frontier Field cluster RXC J2248.7--4431 our lensing analysis constrains mass and concentration of the cluster halo and we confirm the large mass predicted by X-ray and Sunyaev-Zel'dovich (SZ) observations. The study of cluster members shows the relation of galaxy morphology to luminosity and environment (Chapter 4, Gruen et al. 2013). (ii) Our lensing mass measurements for 12 clusters are consistent with X-ray masses derived under the assumption of hydrostatic equilibrium of the intra-cluster gas. We confirm the MORs derived by the South Pole Telescope collaboration for the detection significance of the cluster SZ signal in their survey. We find discrepancies, however, with the Planck SZ MOR. We hypothesize that these are related either to a shallower slope of the MOR or a size, redshift or noise dependent bias in SZ signal extraction (Chapter 5, Gruen et al. 2014b). (iii) Finally, using a combination of simulations and theoretical models for the variation of cluster profiles at fixed mass, we find that the latter is a significant contribution to the uncertainty of cluster lensing mass measurements. A cosmic variance model, such as the one we develop, is necessary for MOR constraints to be accurate at the level required for future surveys (Chapter 6, Gruen et al. 2015b).




Gravitational Lensing: An Astrophysical Tool


Book Description

Gravitational lensing is by now sufficiently well understood that it can be used as a tool of investigation in other astrophysical areas. Applications include the determination of the Hubble constant, probing the dark matter context of galaxies and the mapping of the universe to the identification of otherwise invisible large-scale structures. Each chapter of the book covers in a self-contained manner a subfield of gravitational lensing, with the double aim of describing in a simple way the basics of the theory and of reviewing the most recent developments as well as applications foreseen in the near future. The book will thus be particularly useful as a high-level textbook for nonspecialist researchers and advanced students wishing to become familiar with the field all the way up to the forefront of research.




Cosmic Stellar Explosions and Galaxy Cluster Weak Gravitational Lensing


Book Description

Observations of supernova (SN) explosions and galaxy clusters have been essential to the construction of the standard $\Lambda$-CDM cosmological model. Type Ia SN are powerful probes of the cosmic expansion history and were the tools used to discover cosmic acceleration more than a decade ago. They are the thermonuclear explosions of white dwarf stars, and regular patterns in their light curves and luminosities enable distance measurements with a precision of ~10%. Core-collapse SN, which signal instead the deaths of young, massive stars, also have use as cosmological distance indicators and can be detected, when accompanied by a GRB, to very high redshift. A very different technique for constraining cosmological parameters is to measure the distribution of galaxy clusters as a function of mass and redshift within well-defined X-ray or optical surveys. For this method, the current limiting systematic uncertainty is the calibration of galaxy-cluster mass proxies such as total X-ray luminosity or cluster richness. In this thesis, I discuss the discovery that SNe Ia found in more massive host galaxies are ~10% brighter, after light curve corrections for stretch and color, than those in less massive galaxies. I also demonstrate the existence of strong patterns among the explosion environments of core-collapse SN which point to the effects of progenitor mass and metallicity on massive stellar evolution. Finally, I present a weak-lensing mass analysis of 51 X-ray--luminous galaxy clusters. The inclusion of these lensing mass estimates in current cosmological analyses will improve significantly the calibration of X-ray mass proxies and increase both the accuracy and precision of galaxy cluster cosmological constraints.