The Simplon Fault Zone


Book Description




Faulting, Fracturing and Igneous Intrusion in the Earth's Crust


Book Description

Geologists have long grappled with understanding the mechanical origins of rock deformation. Stress regimes control the nucleation, growth and reactivation of faults and fractures; induce seismic activity; affect the transport of magma; and modulate structural permeability, thereby influencing the redistribution of hydrothermal and hydrocarbon fluids. Experimentalists endeavour to recreate deformation structures observed in nature under controlled stress conditions. Earth scientists studying earthquakes will attempt to monitor or deduce stress changes in the Earth as it actively deforms. All are building upon the pioneering research and concepts of Ernest Masson Anderson, dating back to the start of the twentieth century. This volume celebrates Anderson's legacy, with 14 original research papers that examine faulting and seismic hazard; structural inheritance; the role of local and regional stress fields; low angle faults and the role of pore fluids; supplemented by reviews of Andersonian approaches and a reprint of his classic paper of 1905--




The Internal Structure of Fault Zones


Book Description

Faults are primary focuses of both fluid migration and deformation in the upper crust. The recognition that faults are typically heterogeneous zones of deformed material, not simple discrete fractures, has fundamental implications for the way geoscientists predict fluid migration in fault zones, as well as leading to new concepts in understanding seismic/aseismic strain accommodation. This book captures current research into understanding the complexities of fault-zone internal structure, and their control on mechanical and fluid-flow properties of the upper crust. A wide variety of approaches are presented, from geological field studies and laboratory analyses of fault-zone and fault-rock properties to numerical fluid-flow modelling, and from seismological data analyses to coupled hydraulic and rheological modelling. The publication aims to illustrate the importance of understanding fault-zone complexity by integrating such diverse approaches, and its impact on the rheological and fluid-flow behaviour of fault zones in different contexts.




Tectonic Aspects of the Alpine-Dinaride-Carpathian System


Book Description

The Alps, Carpathians and Dinarides form a complex, highly curved and strongly coupled orogenic system. Motions of the European and Adriatic plates gave birth to a number of 'oceans' and microplates that led to several distinct stages of collision. Although the Alps serve as a classical example of collisional orogens, it becomes clearer that substantial questions on their evolution can only be answered in the Carpathians and Dinarides. Our understanding of the geodynamic evolution of the Alpine-Dinaride-Carpathian System has substantially improved and will continue to develop; this is thanks to collaboration between eastern and western Europe, but also due to the application of new methods and the launch of research initiatives. The largely field-based contributions investigate the following subjects: pre-Alpine heritage and Alpine reactivation; Mesozoic palaeogeography and Alpine subduction and collision processes; extrusion tectonics from the Eastern Alps to the Carpathians and the Pannonian Basin; orogen-parallel and orogen-perpendicular extension; record of orogeny in foreland basins; tectonometamorphic evolution; and relations between the Alps, Apennines and Corsica.




Compressional Tectonics


Book Description

Compressional Tectonics A synthesis of current knowledge on collisional and convergent plate boundaries worldwide Major mountain belts on Earth, such as the Alps, Himalayas, and Appalachians, have been built by compressional tectonic processes during continent-continent and arc-continent collisions. Understanding their formation and evolution is important because of the hazards associated with convergent and collisional plate boundaries, and because these mountain belts contain resources such as precious metals, rare earth elements, oil, gas, and coal. Compressional Tectonics: Plate Convergence to Mountain Building reviews our present-day knowledge of the tectonic evolution of the Alpine-Himalayan and Appalachian belts. Volume highlights include: Overview of terminology relating to compressional and contractional tectonics Discussion of subduction zone dynamics Debates over the timing of the collision and convergence of particular subduction and suture zones Examples of the different stages in the development of orogenic belts This book is one of a set of three in the collection Tectonic Processes: A Global View. The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.




Geodynamics of the Alps 3


Book Description

Geodynamics of the Alps consists of three volumes. This third volume is entirely dedicated to Alpine collision. It describes and interprets elements of the Alpine chain, including Alpine magmatism, the formation of external massifs, the foreland basin, the exhumation of the internal part of the chain and the northern deformation front of the Alps. The aim of this book is to create a space for experts on Alpine research to present the state of the art of specific subjects and provide their own interpretations.




Geodynamics of the Alps 2


Book Description

Geodynamics of the Alps consists of three volumes. This second volume presents the pre-collisional history of the Alps. It discusses the Variscan orogeny in the Alpine realm, the inferred paleo-geography, the structure and processes affecting continental margins and the mantle structure in the pre-orogenic Alpine realm. It concludes by describing oceanic and continental subduction processes. The aim of this book is to create a space for experts on Alpine research to present the state of the art of specific subjects and provide their own interpretations.




Structural Geology


Book Description

Structural Geology is a groundbreaking reference that introduces you to the concepts of nonlinear solid mechanics and non-equilibrium thermodynamics in metamorphic geology, offering a fresh perspective on rock structure and its potential for new interpretations of geological evolution. This book stands alone in unifying deformation and metamorphism and the development of the mineralogical fabrics and the structures that we see in the field. This reflects the thermodynamics of systems not at equilibrium within the framework of modern nonlinear solid mechanics. The thermodynamic approach enables the various mechanical, thermal, hydrological and chemical processes to be rigorously coupled through the second law of thermodynamics, invariably leading to nonlinear behavior. The book also differs from others in emphasizing the implications of this nonlinear behavior with respect to the development of the diverse, complex, even fractal, range of structures in deformed metamorphic rocks. Building on the fundamentals of structural geology by discussing the nonlinear processes that operate during the deformation and metamorphism of rocks in the Earth's crust, the book's concepts help geoscientists and graduate-level students understand how these processes control or influence the structures and metamorphic fabrics—providing applications in hydrocarbon exploration, ore mineral exploration, and architectural engineering. - Authored by two of the world's foremost experts in structural geology, representing more than 70 years of experience in research and instruction - Nearly 300 figures, illustrations, working examples, and photographs reinforce key concepts and underscore major advances in structural geology




Deformation Mechanisms, Rheology and Tectonics


Book Description

This book consists of 18 papers on deformation mechanisms, rheology and tectonics. The main approaches include experimental rock deformation, microstructural analysis, field structural studies, analogue and numerical modelling. New results on various topics are presented, ranging from brittle to ductile deformation and grain-scale to lithospherescale mechanisms. The volume contains review papers on several major current topics, such as the rheology of the lithospheric mantle and the mechanisms of exhumation of high-pressure tectonic units, as well as research papers on kinematic and mechanical analysis of rock deformation and related new techniques. Several contributions emphasize the increasing ability and wish of researchers to strengthen the links between small-scale physical mechanisms and large-scale tectonics. The volume will be of interest to academic and industrial researchers in the fields of structural geology, interactions between metamorphism, fluids and deformation, and large-scale tectonic processes.




Geodynamics of the Lithosphere


Book Description

This second edition of the important introductory text for earth scientists has been thoroughly revised and extended. It is required reading for all those interested in learning about the quantitative description of geological problems. It contains chapters on heat flow, sedimentary basin modeling, the mechanics of continental deformation, PT path modeling, geomorphology, mass transfer and more. The book is aimed at the field oriented geologist who wants to begin by learning about the quantitative description of problems. The new edition features yet more illustrations and maps as well as almost 100 corrections of scientific problems.