The Six Core Theories of Modern Physics


Book Description

This text presents a summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity and modern field theories.







Topics In Modern Physics: Theoretical Foundations


Book Description

While the two previous books entitled Introduction to Modern Physics: Theoretical Foundations and Advanced Modern Physics: Theoretical Foundations exposed the reader to the foundations and frontiers of today's physics, the goal of this third volume is to cover in some detail several topics omitted in the essentially linear progression of the first two.This book is divided into three parts. Part 1 is on quantum mechanics. Analytic solutions to the Schrödinger equation are developed for some basic systems. The analysis is then formalized, concluding with a set of postulates for the theory. Part 2 is on applications of quantum mechanics: approximation methods for bound states, scattering theory, time-dependent perturbation theory, and electromagnetic radiation and quantum electrodynamics. Part 3 covers some selected topics in relativistic quantum field theory: discrete symmetries, the Heisenberg picture, and the Feynman rules for quantum chromodynamics.The three volumes in this series taken together provide a clear, logical, self-contained, and comprehensive base from which the very best students can learn modern physics. When finished, readers should have an elementary working knowledge in the principal areas of theoretical physics of the twentieth century.







Concepts Of Modern Physics: The Haifa Lectures


Book Description

This book highlights foundational issues in theoretical physics in an informal, open style of lecture. It expresses the flow of ideas in physics — from the period of Galileo and Newton to the contemporary ideas of the quantum and relativity theories, astrophysics and cosmology — as explanations for the laws of matter. Rather than presenting the ideas of physics as a fait accompli, the book leaves it up to the reader to decide which of these 20th-century ideas in science will carry over to the 21st century for our further comprehension of the laws of nature in all domains, from that of elementary particles to cosmology.It is the contention of the author that our future progress in physics comprehension will only take place when the foundational controversies between the quantum and relativity theories are recognized and discussion is given to their resolution. The book, therefore, presents an attitude not normally taken in other present-day books on subjects in contemporary theoretical physics and cosmology./a




Advanced Modern Physics


Book Description

Building on the author's introduction to modern physics, this volume focuses on the reformulation of quantum mechanics, angular momentum, scattering theory, lagrangian field theory, symmetries, Feynman rules, quantum electrodynamics, including higher-order contributions, path integrals & canonical transformations for quantum systems.










The Concepts and Theories of Modern Physics


Book Description

Unlike some other reproductions of classic texts (1) We have not used OCR(Optical Character Recognition), as this leads to bad quality books with introduced typos. (2) In books where there are images such as portraits, maps, sketches etc We have endeavoured to keep the quality of these images, so they represent accurately the original artefact. Although occasionally there may be certain imperfections with these old texts, we feel they deserve to be made available for future generations to enjoy.




Principles of Modern Physics


Book Description

Principles of Modern Physics covers important developments in physics during the twentieth century. Beginning with the development of the quantum concept and radiation laws, followed by Einstein's special relativity, it covers atomic structure, basics of spectra, basic (non relativistic) quantum mechanics with an introduction to Dirac's relativistic wave equation and the problem of hydrogen atom. This follows the statistical distribution laws, X-rays and physics of solids, their imperfections, magnetic properties and superconductivity (including newly discovered high Tc superconductors), Zeeman and Stark effects, Lasers, nuclear physics, radio-activity, nuclear fission and fusion, particle accelerators and detectors. It features a discussion on Universe (including stellar evolution Chandrasekhar limit, black holes and big-bang theory), elementary particles (including tau-theta puzzle, SU(2) and SU(3) symmetry, the Eightfold- way, ...