The Software Optimization Cookbook


Book Description

Revealing the secrets of the software tuning process, The Software Optimization Cookbook provides recipes for high-performance applications on the Intel? Pentium? III and Pentium? 4 processors. Simple explanations and C language examples show you how to address performance issues with algorithms, memory access, branching, SIMD instructions, multiple threads, and floating-point calculations. With this book, you need not be a processor architect or assembly language expert to get the full power out of your software on the 32-bit Intel Architecture. Learn how to: Use performance tools and tested concepts to analyze and improve applications. Determine which portions of an application should be given highest priority for optimizations. Identify the reasons that certain portions of your application are slower than they should be. Improve an application by working directly on the root cause of a software bottleneck. Design an application from the ground up for maximum performance.




Video Game Optimization


Book Description

This book covers the theory and practice of optimization, providing a foundation of techniques and knowledge that apply to a wide variety of hardware and software. It uses small focused performance tests to give practical numbers for common optimization scenarios.--[book cover]




Vibrational Medicine


Book Description

The original comprehensive guide to energetic healing with a new preface by the author and updated resources. • More than 125,000 copies sold. • Explores the actual science of etheric energies, replacing the Newtonian worldview with a new model based on Einstein's physics of energy. • Summarizes key points at the end of each chapter to help the serious student absorb and retain the wealth of information presented. Vibrational Medicine has gained widespread acceptance by individuals, schools, and health-care institutions nationwide as the textbook of choice for the study of alternative medicine. Trained in a variety of alternative therapies as well as conventional Western medicine, Dr. Gerber provides an encyclopedic treatment of energetic healing, covering subtle-energy fields, acupuncture, Bach flower remedies, homeopathy, radionics, crystal healing, electrotherapy, radiology, chakras, meditation, and psychic healing. He explains current theories about how various energy therapies work and offers readers new insights into the physical and spiritual perspectives of health and disease.




Practical Optimization


Book Description

In the intervening years since this book was published in 1981, the field of optimization has been exceptionally lively. This fertility has involved not only progress in theory, but also faster numerical algorithms and extensions into unexpected or previously unknown areas such as semidefinite programming. Despite these changes, many of the important principles and much of the intuition can be found in this Classics version of Practical Optimization. This book provides model algorithms and pseudocode, useful tools for users who prefer to write their own code as well as for those who want to understand externally provided code. It presents algorithms in a step-by-step format, revealing the overall structure of the underlying procedures and thereby allowing a high-level perspective on the fundamental differences. And it contains a wealth of techniques and strategies that are well suited for optimization in the twenty-first century, and particularly in the now-flourishing fields of data science, “big data,” and machine learning. Practical Optimization is appropriate for advanced undergraduates, graduate students, and researchers interested in methods for solving optimization problems.




Applied Optimization with MATLAB Programming


Book Description

Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.




Michael Abrash's Graphics Programming Black Book


Book Description

No one has done more to conquer the performance limitations of the PC than Michael Abrash, a software engineer for Microsoft. His complete works are contained in this massive volume, including everything he has written about performance coding and real-time graphics. The CD-ROM contains the entire text in Adobe Acrobat 3.0 format, allowing fast searches for specific facts.







Practical Optimization Methods


Book Description

This introductory textbook adopts a practical and intuitive approach, rather than emphasizing mathematical rigor. Computationally oriented books in this area generally present algorithms alone, and expect readers to perform computations by hand, and are often written in traditional computer languages, such as Basic, Fortran or Pascal. This book, on the other hand, is the first text to use Mathematica to develop a thorough understanding of optimization algorithms, fully exploiting Mathematica's symbolic, numerical and graphic capabilities.




Convex Optimization


Book Description

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.




Optimizing Compilers for Modern Architectures: A Dependence-Based Approach


Book Description

Modern computer architectures designed with high-performance microprocessors offer tremendous potential gains in performance over previous designs. Yet their very complexity makes it increasingly difficult to produce efficient code and to realize their full potential. This landmark text from two leaders in the field focuses on the pivotal role that compilers can play in addressing this critical issue. The basis for all the methods presented in this book is data dependence, a fundamental compiler analysis tool for optimizing programs on high-performance microprocessors and parallel architectures. It enables compiler designers to write compilers that automatically transform simple, sequential programs into forms that can exploit special features of these modern architectures. The text provides a broad introduction to data dependence, to the many transformation strategies it supports, and to its applications to important optimization problems such as parallelization, compiler memory hierarchy management, and instruction scheduling. The authors demonstrate the importance and wide applicability of dependence-based compiler optimizations and give the compiler writer the basics needed to understand and implement them. They also offer cookbook explanations for transforming applications by hand to computational scientists and engineers who are driven to obtain the best possible performance of their complex applications. The approaches presented are based on research conducted over the past two decades, emphasizing the strategies implemented in research prototypes at Rice University and in several associated commercial systems. Randy Allen and Ken Kennedy have provided an indispensable resource for researchers, practicing professionals, and graduate students engaged in designing and optimizing compilers for modern computer architectures. * Offers a guide to the simple, practical algorithms and approaches that are most effective in real-world, high-performance microprocessor and parallel systems. * Demonstrates each transformation in worked examples. * Examines how two case study compilers implement the theories and practices described in each chapter. * Presents the most complete treatment of memory hierarchy issues of any compiler text. * Illustrates ordering relationships with dependence graphs throughout the book. * Applies the techniques to a variety of languages, including Fortran 77, C, hardware definition languages, Fortran 90, and High Performance Fortran. * Provides extensive references to the most sophisticated algorithms known in research.