X-Ray Spectroscopy


Book Description

X-ray spectroscopy has emerged as a powerful tool in research and in industrial laboratories. It is used in the study of metals, semiconductors, amorphous solids, liquids and gases. This comprehensive presentation develops the subject from its basic principles and relates the theory to experimental observations. The new edition includes topics that have recently become important, for example, the X-ray laser, appearance potential spectroscopy, synchrotron radiation and EXAFS of high-Tc superconducting materials. A thorough introduction, up to research level, isprovided to EXAFS, which has seen rapid development in the past few years. This textbook conveniently presents the principles, applications and current techniques of X-ray spectroscopy, which makes it ideal for graduate students beginning research involving x-ray spectroscopy.




X-ray Absorption Spectroscopy for the Chemical and Materials Sciences


Book Description

A clear-cut introduction to the technique and applications of x-ray absorption spectroscopy X-ray Absorption Spectroscopy is being applied to a widening set of disciplines. Applications started with solid state physics and grew to materials science, chemistry, biochemistry and geology. Now, they cut across engineering materials, environmental science and national heritage — providing very detailed and useful information facilitating understanding and development of materials. This practical guide helps investigators choose the right experiment, carry it out properly and analyze the data to give the best reliable result. It gives readers insights to extract what they need from the world of large-scale experimental facilities like synchrotrons, which seem distant to many laboratory scientists. X-ray Absorption Spectroscopy for the Chemical and Materials Sciences seeks to educate readers about the strengths and limitations of the techniques, including their accessibility. Presented in six sections, it offers chapters that cover: an introduction to X-ray absorption fine structure XAFS; the basis of XAFS; X-ray sources; experimental methods; data analysis and simulation methods; and case studies. A no-nonsense introduction to the technique and applications of x-ray absorption spectroscopy Features Questions to support learning through the book Relevant to all working on synchrotron sources and applications in physics, materials, environment/geology and biomedical materials Four-color representation allows easy interpretation of images and data for the reader X-ray Absorption Spectroscopy for the Chemical and Materials Sciences is aimed at Masters-level and PhD students embarking on X-ray spectroscopy projects as well as scientists in areas of materials characterization.




X-Ray Spectroscopy with Synchrotron Radiation


Book Description

Synchrotron radiation has been a revolutionary and invaluable research tool for a wide range of scientists, including chemists, biologists, physicists, materials scientists, geophysicists. It has also found multidisciplinary applications with problems ranging from archeology through cultural heritage to paleontology. The subject of this book is x-ray spectroscopy using synchrotron radiation, and the target audience is both current and potential users of synchrotron facilities. The first half of the book introduces readers to the fundamentals of storage ring operations, the qualities of the synchrotron radiation produced, the x-ray optics required to transport this radiation, and the detectors used for measurements. The second half of the book describes the important spectroscopic techniques that use synchrotron x-rays, including chapters on x-ray absorption, x-ray fluorescence, resonant and non-resonant inelastic x-ray scattering, nuclear spectroscopies, and x-ray photoemission. A final chapter surveys the exciting developments of free electron laser sources, which promise a second revolution in x-ray science. Thanks to the detailed descriptions in the book, prospective users will be able to quickly begin working with these techniques. Experienced users will find useful summaries, key equations, and exhaustive references to key papers in the field, as well as outlines of the historical developments in the field. Along with plentiful illustrations, this work includes access to supplemental Mathematica notebooks, which can be used for some of the more complex calculations and as a teaching aid. This book should appeal to graduate students, postdoctoral researchers, and senior scientists alike.




X-Ray Absorption and X-Ray Emission Spectroscopy, 2 Volume Set


Book Description

X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x-ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x-ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X-ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X-ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials




Neutron and X-ray Spectroscopy


Book Description

- Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books




X-ray Absorption Spectroscopy


Book Description

Targeted for chemists, the current textbook outlines the principles, experimental methods and data analysis in X-Ray Absorption Spectroscopy (XAS). The authors introduce EXAFS, Near-Edge XAS, X-Ray Imaging and many other advanced experimental techniques. A special section of the book is devoted to applications of XAS in chemistry, materials and environmental sciences.




The Spectroscopy of X-rays


Book Description

Brief Summary of our Knowledge of X-rays up to Laue's Discovery. Interference of X-rays. Thechnique of X-ray Spectroscopy. Emission Spectra. Absorption Spectra. Systematic Arrangement and Theory of X-ray Spectra. The Continuous X-ray Spectrum. Other Methods of Evaluating the Inner Energy Levels of the Atoms. Appendix of Tables.




X-Ray Fluorescence Spectroscopy for Laboratory Applications


Book Description

Provides comprehensive coverage on using X-ray fluorescence for laboratory applications This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results. X-Ray Fluorescence Spectroscopy for Laboratory Applications begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation. An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses Focuses on daily laboratory work with commercially available devices Offers a unique compilation of knowledge and best practices from equipment manufacturers and users Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results X-Ray Fluorescence Spectroscopy for Laboratory Applications appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.




Quantitative X-Ray Spectrometry, Second Edition,


Book Description

This work covers important aspects of X-ray spectrometry, from basic principles to the selection of instrument parameters and sample preparation. This edition explicates the use of combined X-ray fluorescence and X-ray diffraction data, and features new applications in environmental studies, forensic science, archeometry and the analysis of metals and alloys, minerals and ore, ceramic materials, catalysts and trace metals.;This work is intended for spectroscopists, analytical chemists, materials scientists, experimental physicists, mineralogists, biologists, geologists and graduate-level students in these disciplines.




Principles and Practice of X-Ray Spectrometric Analysis


Book Description

Since the first edition of this book was published early in 1970, three major developments have occurred in the field of x-ray spectrochemical analysis. First, wavelength-dispersive spectrometry, in 1970 already securely established among instrumental analytical methods, has matured. Highly sophisticated, miniaturized, modular, solid-state circuitry has replaced elec tron-tube circuitry in the readout system. Computers are now widely used to program and control fully automated spectrometers and to store, process, and compute analytical concentrations directly and immediately from ac cumulated count data. Matrix effects have largely yielded to mathematical treatment. The problems associated with the ultralong-wavelength region have been largely surmounted. Indirect (association) methods have extended the applicability of x-ray spectrometry to the entire periodic table and even to certain classes of compounds. Modern commercial, computerized, auto matic, simultaneous x-ray spectrometers can index up to 60 specimens in turn into the measurement position and for each collect count data for up to 30 elements and read out the analytical results in 1--4 min-all corrected for absorption-enhancement and particle-size or surface-texture effects and wholly unattended. Sample preparation has long been the time-limiting step in x-ray spectrochemical analysis. Second, energy-dispersive spectrometry, in 1970 only beginning to assume its place among instrumental analytical methods, has undergone phenomenal development and application and, some believe, may supplant wavelength spectrometry for most applications in the foreseeable future.