The Square Kilometre Array: An Engineering Perspective


Book Description

The Square Kilometre Array (SKA) Project is a global project to design and c- struct a revolutionary new radio telescope with of order 1 million square meters of collecting area in the wavelength range from3mto1cm.It will have two - ders of magnitude greater sensitivity than current telescopes and an unprecedented large instantaneous ?eld-of-view. These capabilities will ensure the SKA will play a leading role in solving the major astrophysical and cosmological questions of the day (see the science case at www.skatelescope.org/pages/page astronom.htm). The SKA will complement major ground- and space-based astronomical facilities under construction or planned in other parts of the electromagnetic spectrum (e.g. ALMA, JWST, ELT, XEUS,...). The current schedule for the SKA foresees a decision on the SKA site in 2006, a decisiononthedesignconceptin2009,constructionofthe?rstphase(international path?nder)from2010to2013,andconstructionofthefullarrayfrom2014to2020. The cost is estimated to be about 1000 M . TheSKAProjectcurrentlyinvolves45institutesin17countries,manyofwhich are involved in nationally- or regionally-funded state-of-the-art technical devel- ments being pursued ahead of the 2009 selection of design concept. This Special Issue of Experimental Astronomy provides a snapshot of SKA engineering act- ity around the world, and is based on presentations made at the SKA meeting in Penticton,BC,CanadainJuly2004.Topicscoveredincludeantennaconcepts,so- ware, signal transport and processing, radio frequency interference mitigation, and reports on related technologies in other radio telescopes now under construction. Further information on the project can be found at www.skatelescope.org.







Searching African Skies


Book Description

"The square kilometre array and South Africa's quest to hear the songs of the stars"--Cover.







The Square Kilometre Array


Book Description




The Economics of Big Science


Book Description

The essays in this open access volume identify the key ingredients for success in capitalizing on public investments in scientific projects and the development of large-scale research infrastructures. Investment in science – whether in education and training or through public funding for developing new research tools and technologies – is a crucial priority. Authors from big research laboratories/organizations, funding agencies and academia discuss how investing in science can produce societal benefits as well as identifying future challenges for scientists and policy makers. The volume cites different ways to assess the socio-economic impact of Research Infrastructures and their role as hubs of global collaboration, creativity and innovation. It highlights the different benefits stemming from fundamental research at the local, national and global level, while also inviting us to rethink the notion of “benefit” in the 21st century. Public investment is required to maintain the pace of technological and scientific advancements over the next decades. Far from advocating a radical transformation and massive expansion in funding, the authors suggest ways for maintaining a strong foundation of science and research to ensure that we continue to benefit from the outputs. The volume draws inspiration from the first “Economics of Big Science” workshop, held in Brussels in 2019 with the aim of creating a new space for dialogue and interaction between representatives of Big Science organizations, policy makers and academia. It aspires to provide useful reading for policy makers, scientists and students of science, who are increasingly called upon to explain the value of fundamental research and adopt the language and logic of economics when engaging in policy discussions.







Eyes on the Sky


Book Description

Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.




Cosmic Magnetism,


Book Description

The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals.




The Square Kilometre Array: Paving the way for the new 21st century radio astronomy paradigm


Book Description

: The Square Kilometre Array (SKA) will provide more than one order of magnitude improvement in sensitivity compared with any existing radio telescope over a wavelength range of several hundred to one, from decametric to microwave wavelengths. It will revolutionize the study of the most abundant element in the Universe, hydrogen, from the epoch of reionisation to the present-day, probing the onset formation period of the very first stars, will closely scan proto-planets and, through the precision timing of pulsars, will detect the distortions of space-time due to gravitational radiation. The SKA is a sensing network spanning 3000 km from its centre and with a collecting area of more than 1 square kilometre, using technologies of the 21st century. The SKA will make the study of a wide range of phenomena initially studied at other wavelengths possible at radio wavelengths, as well as opening a new discovery window on new phenomena at radio wavelengths. Symposium 7 of the JENAM 2010 aimed at bringing these diverse opportunities to the attention of both theoretical and observational astronomers working at all wavelengths, including the potential for synergies with other facilities. The meeting highlighted the scientific potential of the SKA, discussed scientific priorities and their impact on the design of the SKA, explored the synergies between the SKA and other next-generation astronomical facilities in different wavelength domains such as the ALMA, ELTs, LSST, JWST, GRE, IXO, Gaia and Euclid, and high-energy facilities (Auger), explored the “cyber–infrastructure” that may become available for the distribution and distributed analysis of SKA data.