The Standard ML Basis Library


Book Description

The book provides a description of the Standard ML (SML) Basis Library, the standard library for the SML language. For programmers using SML, it provides a complete description of the modules, types and functions composing the library, which is supported by all conforming implementations of the language. The book serves as a programmer's reference, providing manual pages with concise descriptions. In addition, it presents the principles and rationales used in designing the library, and relates these to idioms and examples for using the library. A particular emphasis of the library is to encourage the use of SML in serious system programming. Major features of the library include I/O, a large collection of primitive types, support for internationalization, and a portable operating system interface. This manual will be an indispensable reference for students, professional programmers, and language designers.




The Definition of Standard ML


Book Description

Software -- Programming Languages.




Introduction to Programming Using SML


Book Description

Based on Hanson and Rischel's introductory programming course in the Informatics Programme at the Technical University of Denmark, Using Standard ML (Meta Language) throughout, they bypass theory and customized or efficient implementations to focus on understanding the process of programming and program design. Annotation copyrighted by Book News, Inc., Portland, OR




ML for the Working Programmer


Book Description

This new edition of a successful text treats modules in more depth, and covers the revision of ML language.




Elementary Standard ML


Book Description

Standard ML has become the principal teaching language for introducing functional programming. This textbook places emphasis on teaching the essential features of ML, with extensive practical examples, and is intended for undergraduates studying functional programming with Standard ML.




Foundations of Programming Languages


Book Description

This clearly written textbook introduces the reader to the three styles of programming, examining object-oriented/imperative, functional, and logic programming. The focus of the text moves from highly prescriptive languages to very descriptive languages, demonstrating the many and varied ways in which we can think about programming. Designed for interactive learning both inside and outside of the classroom, each programming paradigm is highlighted through the implementation of a non-trivial programming language, demonstrating when each language may be appropriate for a given problem. Features: includes review questions and solved practice exercises, with supplementary code and support files available from an associated website; provides the foundations for understanding how the syntax of a language is formally defined by a grammar; examines assembly language programming using CoCo; introduces C++, Standard ML, and Prolog; describes the development of a type inference system for the language Small.







Real World OCaml


Book Description

This fast-moving tutorial introduces you to OCaml, an industrial-strength programming language designed for expressiveness, safety, and speed. Through the book’s many examples, you’ll quickly learn how OCaml stands out as a tool for writing fast, succinct, and readable systems code. Real World OCaml takes you through the concepts of the language at a brisk pace, and then helps you explore the tools and techniques that make OCaml an effective and practical tool. In the book’s third section, you’ll delve deep into the details of the compiler toolchain and OCaml’s simple and efficient runtime system. Learn the foundations of the language, such as higher-order functions, algebraic data types, and modules Explore advanced features such as functors, first-class modules, and objects Leverage Core, a comprehensive general-purpose standard library for OCaml Design effective and reusable libraries, making the most of OCaml’s approach to abstraction and modularity Tackle practical programming problems from command-line parsing to asynchronous network programming Examine profiling and interactive debugging techniques with tools such as GNU gdb




Mathematics for Machine Learning


Book Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.




Elements of ML Programming


Book Description

This highly accessible introduction to the fundamentals of ML is presented by computer science educator and author, Jeffrey D. Ullman. The primary change in the Second Edition is that it has been thoroughly revised and reorganized to conform to the new language standard called ML97. This is the first book that offers both an accurate step-by-step tutorial to ML programming and a comprehensive reference to advanced features. It is the only book that focuses on the popular SML/NJ implementation. The material is arranged for use in sophomore through graduate level classes or for self-study. This text assumes no previous knowledge of ML or functional programming, and can be used to teach ML as a first programming language. It is also an excellent supplement or reference for programming language concepts, functional programming, or compiler courses.