Proofs from THE BOOK


Book Description

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.




Book of Proof


Book Description

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.




The Story of Proof


Book Description

How the concept of proof has enabled the creation of mathematical knowledge The Story of Proof investigates the evolution of the concept of proof—one of the most significant and defining features of mathematical thought—through critical episodes in its history. From the Pythagorean theorem to modern times, and across all major mathematical disciplines, John Stillwell demonstrates that proof is a mathematically vital concept, inspiring innovation and playing a critical role in generating knowledge. Stillwell begins with Euclid and his influence on the development of geometry and its methods of proof, followed by algebra, which began as a self-contained discipline but later came to rival geometry in its mathematical impact. In particular, the infinite processes of calculus were at first viewed as “infinitesimal algebra,” and calculus became an arena for algebraic, computational proofs rather than axiomatic proofs in the style of Euclid. Stillwell proceeds to the areas of number theory, non-Euclidean geometry, topology, and logic, and peers into the deep chasm between natural number arithmetic and the real numbers. In its depths, Cantor, Gödel, Turing, and others found that the concept of proof is ultimately part of arithmetic. This startling fact imposes fundamental limits on what theorems can be proved and what problems can be solved. Shedding light on the workings of mathematics at its most fundamental levels, The Story of Proof offers a compelling new perspective on the field’s power and progress.




Living Proof


Book Description

Wow! This is a powerful book that addresses a long-standing elephant in the mathematics room. Many people learning math ask ``Why is math so hard for me while everyone else understands it?'' and ``Am I good enough to succeed in math?'' In answering these questions the book shares personal stories from many now-accomplished mathematicians affirming that ``You are not alone; math is hard for everyone'' and ``Yes; you are good enough.'' Along the way the book addresses other issues such as biases and prejudices that mathematicians encounter, and it provides inspiration and emotional support for mathematicians ranging from the experienced professor to the struggling mathematics student. --Michael Dorff, MAA President This book is a remarkable collection of personal reflections on what it means to be, and to become, a mathematician. Each story reveals a unique and refreshing understanding of the barriers erected by our cultural focus on ``math is hard.'' Indeed, mathematics is hard, and so are many other things--as Stephen Kennedy points out in his cogent introduction. This collection of essays offers inspiration to students of mathematics and to mathematicians at every career stage. --Jill Pipher, AMS President This book is published in cooperation with the Mathematical Association of America.




Story Proof


Book Description

Like Stephen Krashen's important work in The Power of Reading, Story Proof collects and analyzes the research that validates the importance of story, story reading, and storytelling to the brain development and education of children and adults. Accomplished researcher and storyteller Kendall Haven, establishes the need for understanding the research findings in neural psychology and brain development and the value of a common definition of story if one is to fully grasp the importance and necessity of story to the development of the human mind. To support his case, he reviews a wealth of research from storytellers, teachers, and others who have experienced the power of story firsthand. The author has collected anecdotal experiences from over 100 performing storytellers and from 1,800 story practitioners (mostly teachers) who have made extensive use of stories. He has read more than 150 qualitative and quantitative research studies that discuss the effectiveness of stories and/or storytelling for one or more specific applications (education, organizational management, knowledge management, medical and narrative therapy, etc.). Forty of these studies were literature reviews and comparative studies including analysis of over 1,000 studies and descriptive articles. He has also gathered research evidence from his own story performances for total audiences of over 4 million and from conducting story writing workshops with 200,000 students and 40,000 teachers.




How to Prove It


Book Description

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.




99 Variations on a Proof


Book Description

An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.




Proof and the Art of Mathematics


Book Description

How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.




Proof


Book Description

THE STORY: On the eve of her twenty-fifth birthday, Catherine, a troubled young woman, has spent years caring for her brilliant but unstable father, a famous mathematician. Now, following his death, she must deal with her own volatile emotions; the




God in Proof


Book Description

In this tour of the history of arguments for and against the existence of God, Nathan Schneider embarks on a remarkable intellectual, historical, and theological journey through the centuries of believers and unbelieversÑfrom ancient Greeks, to medieval Arabs, to todayÕs most eminent philosophers and the New Atheists. Framed by an account of SchneiderÕs own unique journey, God in Proof illuminates the great minds who wrestled with one of historyÕs biggest questions together with their arguments, bringing them to life in their time, and our own. SchneiderÕs sure-handed portrayal of the characters and ideas involved in the search for proof challenges how we normally think about doubt and faith while showing that, in their quest for certainty and the proofs to declare it, thinkers on either side of the God divide are often closer to one another than they would like to think.